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The purpose of this chapter is to provide a framework for determining the
reaction rate given a detailed statement of the reaction chemistry.

We use several concepts from the subject of chemical kinetics to illustrate
two key points:

1. The stoichiometry of an elementary reaction defines the concentration de-
pendence of the rate expression.

2. The quasi-steady-state assumption (QSSA) and the reaction equilibrium as-
sumption allow us to generate reaction-rate expressions that capture the de-
tails of the reaction chemistry with a minimum number of rate constants.
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The Concepts

The concepts include:

• the elementary reaction

• Tolman’s principle of microscopic reversibility

• elementary reaction kinetics

• the quasi-steady-state assumption

• the reaction equilibrium assumption

The goals here are to develop a chemical kinetics basis for the empirical expres-
sion, and to show that kinetic analysis can be used to take mechanistic insight
and describe reaction rates from first principles.
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Reactions at Surfaces

• We also discuss heterogeneous catalytic adsorption and reaction kinetics.

• Catalysis has a significant impact on the United States economy1 and many
important reactions employ catalysts.2

• We demonstrate how the concepts for homogeneous reactions apply to het-
erogeneously catalyzed reactions with the added constraint of surface-site
conservation.

• The physical characteristics of catalysts are discussed in Chapter 7.

1Catalysis is at the heart of the chemical industry, with sales in 1990 of $292 billion and employment of 1.1
million, and the petroleum refining industry, which had sales of $140 billion and employment of 0.75 million in
1990 [13].

2Between 1930 and the 1980s, 63 major products and 34 major process innovations were introduced by the
chemical industry. More than 60% of the products and 90% of these processes were based on catalysis[13].
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Elementary Reactions and Microscopic Reversibility

• Stoichiometric statements such as

A+ B -⇀↽- C

are used to represent the changes that occur during a chemical reaction.
These statements can be interpreted in two ways.

• The reaction statement may represent the change in the relative amounts of
species that is observed when the reaction proceeds. overall stoichiometry

• Or the reaction statement may represent the actual molecular events that are
presumed to occur as the reaction proceeds. elementary reaction

• The elementary reaction is characterized by a change from reactants to prod-
ucts that proceeds without identifiable intermediate species forming.
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Elementary Reactions and Rate Expressions

• For an elementary reaction, the reaction rates for the forward and reverse
paths are proportional to the concentration of species taking part in the re-
action raised to the absolute value of their stoichiometric coefficients.

• The reaction order in all species is determined directly from the stoichiometry.

• Elementary reactions are usually unimolecular or bimolecular because the
probability of collision between several species is low and is not observed at
appreciable rates.

• For an overall stoichiometry, on the other hand, any correspondence between
the stoichiometric coefficients and the reaction order is purely coincidental.
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Some Examples — Acetone decomposition

• The first example involves the mechanism proposed for the thermal decom-
position of acetone at 900 K to ketene and methyl-ethyl ketone (2-butanone)
[17].

• The overall reaction can be represented by

3CH3COCH3 -→ CO+ 2CH4 + CH2CO+ CH3COC2H5 (1)
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Acetone decomposition

• The reaction is proposed to proceed by the following elementary reactions

3CH3COCH3 -→ CO+ 2CH4 + CH2CO+ CH3COC2H5

CH3COCH3 -→ CH3 + CH3CO (2)

CH3CO -→ CH3 + CO (3)

CH3 + CH3COCH3 -→ CH4 + CH3COCH2 (4)

CH3COCH2 -→ CH2CO + CH3 (5)

CH3 + CH3COCH2 -→ CH3COC2H5 (6)
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Acetone decomposition

• The thermal decomposition of acetone generates four stable molecules that
can be removed from the reaction vessel: CO, CH4, CH2CO and CH3COC2H5.

• Three radicals are formed and consumed during the thermal decomposition
of acetone: CH3, CH3CO and CH3COCH2.

• These three radicals are reaction intermediates and cannot be isolated outside
of the reaction vessel.
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Overall stoichiometry from Mechanism

• Assign the species to the A vector as follows

Species Formula Name

A1 CH3COCH3 acetone
A2 CH3 methyl radical
A3 CH3CO acetyl radical
A4 CO carbon monoxide
A5 CH3COCH2 acetone radical
A6 CH2CO ketene
A7 CH4 methane
A8 CH3COC2H5 methyl ethyl ketone
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• The stoichiometric matrix is

ν =




−1 1 1 0 0 0 0 0
0 1 −1 1 0 0 0 0
−1 −1 0 0 1 0 1 0

0 1 0 0 −1 1 0 0
0 −1 0 0 −1 0 0 1



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Overall stoichiometry from Mechanism

• Multiply ν by
[

1 1 2 1 1
]

• We obtain [
−3 0 0 1 0 1 2 1

]

which is the overall stoichiometry given in Reaction 1.
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Example Two — Smog

• The second example involves one of the major reactions responsible for the
production of photochemical smog.

• The overall reaction and one possible mechanism are

2NO2 + hν -→ 2NO+O2 (7)
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NO2 + hν -→ NO+ O (8)

O+NO2 -⇀↽- NO3 (9)

NO3 +NO2 -→ NO+O2 +NO2 (10)

NO3 + NO -→ 2NO2 (11)

O+NO2 -→ NO+O2 (12)
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Smog

• In this reaction mechanism, nitrogen dioxide is activated by absorbing pho-
tons and decomposes to nitric oxide and oxygen radicals (elementary Reac-
tion 8).

• Stable molecules are formed: NO and O2

• Radicals, O and NO3, are generated and consumed during the photochemical
reaction.

• Work through the steps to determine the linear combination of the mecha-
nistic steps that produces the overall reaction.
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Example Three — Methane Synthesis

• The third example involves the synthesis of methane from synthesis gas, CO
and H2, over a ruthenium catalyst [6].

• The overall reaction and one possible mechanism are

3H2(g)+ CO(g) -→ CH4(g)+H2O(g) (13)
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CO(g)+ S
k1-⇀↽-
k−1

COads (14)

COads + S
k2-⇀↽-
k−2

Cads +Oads (15)

Oads +H2(g)
k3-→ H2O(g)+ S (16)

H2(g)+ 2S
k4-⇀↽-
k−4

2Hads (17)

Cads + Hads
k5-⇀↽-
k−5

CHads + S (18)

CHads + Hads
k6-⇀↽-
k−6

CH2ads + S (19)

CH2ads + Hads
k7-⇀↽-
k−7

CH3ads + S (20)

CH3ads + Hads
k8-→ CH4(g)+ 2S (21)
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Methane Synthesis

• The subscripts g and ads refer to gas phase and adsorbed species, respec-
tively, and S refers to a vacant ruthenium surface site.

• During the overall reaction, the reagents adsorb (elementary Reactions 14
and 17), and the products form at the surface and desorb (elementary Reac-
tions 16 and 21).

• Adsorbed CO (COs) either occupies surface sites or dissociates to adsorbed
carbon and oxygen in elementary Reaction 15.
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Methane Synthesis

• The adsorbed carbon undergoes a sequential hydrogenation to methyne,
methylene, and methyl, all of which are adsorbed on the surface.

• Hydrogenation of methyl leads to methane in elementary Reaction 21.

• In this example, the overall reaction is twice the fourth reaction added to the
remaining reactions.

18



Elementary Reactions — Characteristics

• One criterion for a reaction to be elementary is that as the reactants transform
into the products they do so without forming intermediate species that are
chemically identifiable.

• A second aspect of an elementary reaction is that the reverse reaction also
must be possible on energy, symmetry and steric bases, using only the prod-
ucts of the elementary reaction.

• This reversible nature of elementary reactions is the essence of Tolman’s
principle of microscopic reversibility [19, p. 699].
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Microscopic Reversibility

This assumption (at equilibrium the number of molecules going in unit
time from state 1 to state 2 is equal to the number going in the reverse
direction) should be recognized as a distinct postulate and might be called
the principle of microscopic reversibility. In the case of a system in thermo-
dynamic equilibrium, the principle requires not only that the total number
of molecules leaving a given quantum state in unit time is equal to the
number arriving in that state in unit time, but also that the number leaving
by any one particular path, is equal to the number arriving by the reverse
of that particular path.
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Transition State Theory

Various models or theories have been postulated to describe the rate of an
elementary reaction. Transition state theory (TST) is reviewed briefly in the next
section to describe the flow of systems (reactants -→ products) over potential-
energy surfaces. Using Tolman’s principle, the most probable path in one di-
rection must be the most probable path in the opposite direction. Furthermore,
the Gibbs energy difference in the two directions must be equal to the overall
Gibbs energy difference — the ratio of rate constants for an elementary reaction
must be equal to the equilibrium constant for the elementary reaction.
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Elementary Reaction Kinetics

In this section we outline the transition-state theory (TST), which can be used
to predict the rate of an elementary reaction. Our purpose is to show how the
rate of an elementary reaction is related to the concentration of reactants. The
result is

ri = ki
∏

j∈Ri
c
−νij
j − k−i

∏

j∈Pi
c
νij
j (22)

in which j ∈ Ri and j ∈ Pi represent the reactant species and the product
species in the ith reaction, respectively.

Equation 22 forms the basis for predicting reaction rates and is applied to
homogeneous and heterogeneous systems. Because of its wide use, much of
Chapter 5 describes the concepts and assumptions that underlie Equation 22.
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Potential Energy Diagrams

We consider a simple reaction to illustrate the ideas

F+H H -⇀↽- {F H H} -⇀↽- F H+H

The potential energy V(r) of the molecule is related to the relative position of
the atoms, and for a diatomic molecule the potential energy can be represented
with a Morse function

V(r) = D
[
e−2βr − 2e−βr

]

in whichD is the dissociation energy, r is the displacement from the equilibrium
bond length, and β is related to the vibrational frequency of the molecule. The
following figure presents the Morse functions for HF and H2 molecules.
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Potential energy of HF and H2 molecules
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Figure 1: Morse potential for H2 and HF.
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Coordinate system for multi-atom molecules

• Molecules containing N atoms require 3N Cartesian coordinates to specify
the locations of all the nuclei.

• Consider a moleculre of three atoms; we require only three coordinates to
describe the internuclear distances.

• We choose the two distances from the center atom and the bond angle as the
three coordinates.

• The potential energy is a function of all three coordinate values. A plot of the
energy would be a three-dimensional surface, requiring four dimensions to
plot the surface.
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Coordinate system

• We fix the bond angle by choosing a collinear molecule

• Only the two distances relative to a central atom are required to describe the
molecule.

• The potential energy can be expressed as a function of these two distances,
and we can view this case as a three-dimensional plot.
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Collinear Approach of HF and H2

• Figure 2 shows a representative view of such a surface for the collinear colli-
sion between F and H2.

F+H H -⇀↽- {F H H} -⇀↽- F H+H

• Several sources provided the data used to calculate this potential-energy sur-
face [14, 16, 15].

• Moore and Pearson provide a more detailed discussion of computing
potential-energy surfaces [12].
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Collinear Approach of HF and H2
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Collinear Approach of HF and H2 – Energy Contours
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Figure 3: Contour representation of the potential-energy surface.
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The energy surface

• Large rHF. F atoms exist along with H2 molecules. Reproduces the H2 curve
in Figure 1.

• Large rHH. H atoms exist along with HF molecules. Reproduces the curve for
HF in Figure 1.

• As the F atom is brought into contact with H2 in a collinear fashion, a surface
of energies is possible that depends on the values of rHF and rHH.

• The minimum energy path along the valleys is shown by the dashed line in
Figures 2 and 3.
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• The reaction starts in the H2 valley at large rHF, proceeds along the minimum
energy path and ends in the HF valley at large rHH.
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The energy surface

• The transistion state is is the saddle point connecting the two vallyes. the
minimum energy path is a saddle point.

• The dashed line is referred to as the reaction-coordinate pathway, and move-
ment along this path is the reaction coordinate, ξ.

• Figure 4 is a reaction-coordinate diagram, which displays the energy change
during this reaction.
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Reaction coordinate diagram
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Figure 4: Reaction-coordinate diagram.
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Reaction coordinate diagram

• The reaction coordinate represents travel along the minimum energy path
from reactants to products.

• The difference in energies between reactants and products is the heat of
reaction; in this case it is exothermic by 34 kcal/mol.

• The barrier height of 4 kcal/mol between reactants and products is used to
calculate the activation energy for the reaction.
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Transition state complex

• The molecular structure (the relative positions of F, and two H’s) at the saddle
point is called the transition-state complex.

• The principle of microscopic reversibility implies that the same structure at
the saddle point must be realized if the reaction started at HF + H and went
in reverse.

• The transition-state complex is NOT a chemically identifiable reaction inter-
mediate; it is the arrangement of atoms at the point in energy space between
reactants and products.

• Any change of relative positions of F and the two H’s for the transition-state
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complex (as long as the motions are collinear) results in the complex reverting
to reactants or proceeding to products.

• Using statistical mechanics and the potential energy diagram, we can cal-
culate the rate constant, i.e. the frequency at which the transitions state
decomposes to reactants or products.
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Fast and Slow Time Scales

• One of the characteristic features of many chemically reacting systems is the
widely disparate time scales at which reactions occur.

• It is not unusual for complex reaction mechanisms to contain rate constants
that differ from each other by several orders of magnitude.

• Moreover, the concentrations of highly reactive intermediates may differ by
orders of magnitude from the concentrations of relatively stable reactants
and products.

• These widely different time and concentration scales present challenges for
accurate estimation of rate constants, measurement of low-concentration
species, and even numerical solution of complex models.
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Fast and Slow Time Scales

• On the other hand, these disparate scales often allow us to approximate the
complete mechanistic description with simpler rate expressions that retain
the essential features of the full problem on the time scale or in the concen-
tration range of interest.

• Although these approximations were often used in earlier days to allow easier
model solution, that is not their primary purpose today.

• The reduction of complex mechanisms removes from consideration many
parameters that would be difficult to estimate from available data.

• The next two sections describe two of the most widely used methods of
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model simplification: the equilibrium assumption and the quasi-steady-state
assumption.
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The Reaction Equilibrium Assumption

• In the reaction equilibrium assumption, we reduce the full mechanism on the
basis of fast and slow reactions.

• In a given mechanism consisting of multiple reactions, some reactions may
be so much faster than others, that they equilibrate after any displacement
from their equilibrium condition.

• The remaining, slower reactions then govern the rate at which the amounts
of reactants and products change.

• If we take the extreme case in which all reactions except one are assumed at
equilibrium, this remaining slow reaction is called the rate-limiting step.
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• But the equilibrium approximation is more general and flexible than this one
case. We may decompose a full set of reactions into two sets consisting of
any number of slow and fast reactions, and make the equilibrium assumption
on the set of fast reactions.
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The archetype example of fast and slow reactions

• We illustrate the main features with the simple series reaction

A
k1-⇀↽-
k−1

B, B
k2-⇀↽-
k−2

C (23)

• Assume that the rate constants k2, k−2 are much larger than the rate constants
k1, k−1, so the second reaction equilibrates quickly.

• By contrast, the first reaction is slow and can remain far from equilibrium for
a significant period of time.

• Because the only other reaction in the network is at equilibrium, the slow,
first reaction is called the rate-limiting step.
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• We show that the rate of this slow reaction does indeed determine or limit
the rate at which the concentrations change.
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The complete case

• We start with the full model and demonstrate what happens if k2, k−2 �
k1, k−1.

• Consider the solution to the full model with rate constants k1 = 1, k−1 =
0.5, k2 = k−2 = 1 and initial conditions cA(0) = 1.0, cB(0) = 0.4, cC(0) = 0
shown in Figure 5.
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Full model, rates about the same
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Figure 5: Full model solution for k1 = 1, k−1 = 0.5, k2 = k−2 = 1.
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Turn up the second rate
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Figure 6: Full model solution for k1 = 1, k−1 = 0.5, k2 = k−2 = 10.
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Turn it way up
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Now let’s do some analysis

• We now analyze the kinetic model. The text shows how to derive models for
both the fast and slow time scales. The text also treats models in terms of
reaction extent and concentration variables.

• Here I will focus on only the slow time scale model, and only the concentration
variables.

• The main thing we are trying to do is enforce the condition that the second
reaction is at equilibrium. We therefore set its rate to zero to find the equi-
librium relationship between cB and cC.
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Equilibrium constraint

• The equilibrium assumption is made by adding the algebraic constraint that
r2 = 0 or K2cB − cC = 0.

r2 = 0 = k2cB − k−2cC

0 = K2cB − cC, K2 = k2

k−2

• The mole balances for the full model are

dcA
dt
= −r1,

dcB
dt
= r1 − r2,

dcC
dt
= r2
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• We can add the mole balances for components B and C to eliminate r2

d(cB + cC)
dt

= r1 (24)

Notice we have not set r2 = 0 to obtain this result. Equation 24 involves no
approximation.
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Getting back to ODEs

• If we differentiate the equilibrium condition, we obtain a second relation,
K2dcB/dt−dcC/dt = 0, which allows us to solve for both dcB/dt and dcC/dt,

dcB
dt
= 1

1+K2
r1,

dcC
dt
= K2

1+K2
r1 (25)
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Equations Fast Time Scale(τ = k−2t) Slow Time Scale(t)

dcA
dτ

= 0, cA(0) = cA0
dcA
dt
= −r1, cA(0) = cA0

ODEs
dcB
dτ

= −(K2cB − cC), cB(0) = cB0
dcB
dt
= 1

1+K2
r1, cB(0) = cBs

dcC
dτ

= K2cB − cC , cC(0) = cC0
dcC
dt
= K2

1+K2
r1, cC(0) = cCs

cA = cA0
dcA
dt
= −r1, cA(0) = cA0

DAEs
dcB
dτ

= −(K2cB − cC), cB(0) = cB0 0 = K2cB − cC

0 = cA − cA0 + cB − cB0 + cC − cC0 0 = cA − cA0 + cB − cB0 + cC − cC0

cBs = 1
1+K2

(cB0 + cC0), cCs = K2
1+K2

(cB0 + cC0)
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Full model and equilibrium assumption
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A trap to avoid

• Critique your colleague’s proposal.

“Look, you want to enforce cC = K2cB, right? Well, that means r2 = 0, so just
set it to zero, and be done with it. I get the following result.”

dcA
dt
= −r1

dcB
dt
= r1 − r2

dcC
dt
= r2 full model

dcA
dt
= −r1

dcB
dt
= r1

dcC
dt
= 0 reduced model

• The result for B and C doesn’t agree with Equation 25. What went wrong?
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Paradox lost

• Let’s look at C’s mass balance again

dcC
dt
= k2cB − k−2cC

= k−2(K2cB − cC)

• Your colleague is suggesting this product is zero because the second term is
zero, but what did we do to make the full model approach equilibrium?

• We made k2, k−2 large!
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Paradox lost

• So here’s the flaw.
dcC
dt
= k−2︸ ︷︷ ︸

goes to ∞!

(K2cB − cC)︸ ︷︷ ︸
goes to 0

≠ 0

• The product does NOT go to zero. In fact we just showed

dcC
dt
= K2

1+K2
r1

• This fact is far from obvious without the analysis we did.
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Further special cases – second reaction irreversible

• We start with the slow time-scale model given in the table and take the limit
as K2 -→ ∞ giving

dcA
dt
= −r1, cA(0) = cA0

dcB
dt
= 0, cB(0) = 0

dcC
dt
= r1, cC(0) = cB0 + cC0

• In this limit the B disappears, cB(t) = 0, and r1 = k1cA, which describes the
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irreversible reaction of A directly to C with rate constant k1

A
k1-→ C (26)

• We see in the next section that this case is well described also by making the
quasi-steady-state assumption on species B.
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Second reaction irreversible in other direction

• Take the second reaction as irreversible in the backward direction, K2 = 0.
We obtain from the table

dcA
dt
= −r1, cA(0) = cA0

dcB
dt
= r1, cB(0) = cB0 + cC0

dcC
dt
= 0, cC(0) = 0

• This describes the reversible reaction between A and B with no second reac-
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tion, cC(t) = 0,

A
k1-⇀↽-
k−1

B (27)

• Under the equilibrium assumption, we see that the two series reactions in
Equation 23 may reduce to A going directly and irreversibly to C, Equation 26,
or A going reversibly to B, Equation 27, depending on the magnitude of the
equilibrium constant of the second, fast reaction.
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The Quasi-Steady-State Assumption

• In the quasi-steady-state assumption, we reduce the full mechanism on the
basis of rapidly equilibrating species rather than reactions as in the reaction
equilibrium assumption.

• Highly reactive intermediate species are usually present only in small concen-
trations.

• Examples of these transitory species include atoms, radicals, ions and
molecules in excited states.
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The Quasi-Steady-State Assumption

• We set the production rate of these species equal to zero, which enables their
concentration to be determined in terms of reactants and products using
algebraic equations.

• After solving for these small concentration species, one is then able to con-
struct reaction-rate expressions for the stable reactants and stable products
in terms of reactant and product concentrations only.

• The idea to set the production rate of a reaction intermediate equal to zero
has its origins in the early 1900s [2, 4] and has been termed the Bodenstein-
steady-state, pseudo-steady-state, or quasi-steady-state assumption.

• The intermediate species are referred to as QSSA species [20].
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QSSA Example

• To illustrate the QSSA consider the simple elementary reaction

A
k1-→ B B

k2-→ C

• Let the initial concentration in a constant-volume, isothermal, batch reactor
be cA = cA0, cB = cC = 0.

67

• The exact solution to the set of reactions is

cA = cA0e−k1t (28)

cB = cA0
k1

k2 − k1

(
e−k1t − e−k2t

)
(29)

cC = cA0
1

k2 − k1

(
k2(1− e−k1t)− k1(1− e−k2t)

)
(30)
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Making B a highly reactive intermediate species

• We make k2 >> k1 in order for B to be in low concentration. Formation
reactions are much slower than consumption reactions.

• Figure 9 shows the normalized concentration of C given in Equation 30 versus
time for different values of k2/k1.

• The curve cC/cA0 =
(

1− e−k1t
)

is shown also (the condition where k2/k1 =
∞).

• Figure 9 illustrates that as k2 � k1, the exact solution is equivalent to

cC = cA0

(
1− e−k1t

)
(31)
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Full model
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Applying the QSSA

• Define component B to be a QSSA species. We write

dcBs

dt
= 0 = k1cAs − k2cBs

• That leads to

cBs = k1

k2
cAs (32)

• Note cBs is not constant; it changes linearly with the concentration of A.

• The issue is not if cB is a constant, but whether or not the B equilibrates
quickly to its quasi-steady value.
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Applying the QSSA

• Substitution of cBs into the material balances for components A and C results
in

dcAs

dt
= −k1cAs (33)

dcCs
dt

= k1cAs (34)

• The solutions to Equations 33 and 34 are presented in the following table for
the initial condition cAs = cA0, cBs = cCs = 0.

73

Results of QSSA

Scheme I: A
k1-→ B

k2-→ C (35)

Exact Solution

cA = cA0e−k1t (36)

cB = cA0
k1

k2 − k1

(
e−k1t − e−k2t

)
(37)

cC = cA0
1

k2 − k1

(
k2(1− e−k1t)− k1(1− e−k2t)

)
(38)

QSSA Solution

cAs = cA0e−k1t (39)

cBs = cA0
k1

k2
e−k1t (40)

cCs = cA0

(
1− e−k1t

)
(41)

Table 1: Exact and QSSA solutions for kinetic Scheme I.
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Approximation error in C production
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Figure 10: Fractional error in the QSSA concentration of C versus dimensionless
time for the series reaction A → B → C for different values of k2/k1.
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QSSA — Summary

• The QSSA is a useful tool in reaction analysis.

• Material balances for batch and plug-flow reactors are ordinary differential
equations.

• By setting production rates to zero for components that are QSSA species,
their material balances become algebraic equations. These algebraic equa-
tions can be used to simplify the reaction expressions and reduce the number
of equations that must be solved simultaneously.

• In addition, appropriate use of the QSSA can eliminate the need to know sev-
eral difficult-to-measure rate constants. The required information can be re-
duced to ratios of certain rate constants, which can be more easily estimated
from data.

77

Developing Rate Expressions from Complex

Mechanisms

• In this section we develop rate expressions for the mechanistic schemes pre-
sented in the introduction.

• The goal is to determine the rate in terms of measurable quantities, such as
the concentrations of the reactants and products, and the temperature.

• The following procedure enables one to develop a reaction-rate expression
from a set of elementary reactions.
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Procedure

1. Identify the species that do not appear in equilibrium reactions and write
a statement for the rate of production of these species using Equations 42
and 43.

ri = ki
∏

j∈Ri
c
−νij
j − k−i

∏

j∈Pi
c
νij
j (42)

Rj =
nr∑

i=1

νijri (43)

2. If the rate of production statement developed in step 1 contains the concen-
tration of reaction intermediates, apply the QSSA to these species.

3. Perform the necessary algebraic manipulations and substitute the result-
ing intermediate concentrations into the rate of production statement from
step 1.
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Production rate of acetone

Example 5.1: Production rate of acetone

• The thermal decomposition of acetone is represented by the following stoi-
chiometry

3CH3COCH3 -→ CO+ 2CH4 + CH2CO+ CH3COC2H5
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Production rate of acetone

• Use the following mechanism to determine the production rate of ace-
tone [17].

• You may assume the methyl, acetyl and acetone radicals are QSSA species.

CH3COCH3
k1-→ CH3 + CH3CO (44)

CH3CO
k2-→ CH3 + CO (45)

CH3 + CH3COCH3
k3-→ CH4 + CH3COCH2 (46)

CH3COCH2
k4-→ CH2CO + CH3 (47)

CH3 + CH3COCH2
k5-→ CH3COC2H5 (48)
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Production rate of acetone

Solution

Let the species be designated as:

Species Formula Name

A1 CH3COCH3 acetone
A2 CH3 methyl radical
A3 CH3CO acetyl radical
A4 CO carbon monoxide
A5 CH3COCH2 acetone radical
A6 CH2CO ketene
A7 CH4 methane
A8 CH3COC2H5 methyl ethyl ketone
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Production rate of acetone — QSSA

• Write the production rate of acetone using Reactions 44 and 46

R1 = −k1c1 − k3c1c2 (49)

• Species 2, 3 and 5 are QSSA species. Apply the QSSA to each of these species

R2 = 0 = k1c1 + k2c3 − k3c1c2 + k4c5 − k5c2c5 (50)

R3 = 0 = k1c1 − k2c3 (51)

R5 = 0 = k3c1c2 − k4c5 − k5c2c5 (52)
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Production rate of acetone — QSSA

• From Equation 51

c3 = k1

k2
c1 (53)

• Adding Equations 50, 51 and 52 gives

c5 = k1

k5

c1

c2
(54)
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Production rate of acetone — QSSA

• Inserting the concentrations shown in Equations 53 and 54 into Equation 50
gives

k3c2
2 − k1c2 − k1k4

k5
= 0

c2 = k1

2k3
+
√√√√ k2

1

4k2
3
+ k1k4

k3k5
(55)

in which the positive sign is chosen to obtain a positive concentration.

• This result can be substituted into Equation 49 to give the rate in terms of
measurable species.

R1 = −

3

2
k1 +

√√√k2
1

4
+ k1k3k4

k5


 c1 (56)
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Production rate of acetone — QSSA

• Equation 56 can be simplified to

R1 = −keffc1 (57)

by defining an effective rate constant

keff = 3
2
k1 +

√√√k2
1

4
+ k1k3k4

k5

�
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Summary of acetone example

• The production rate of acetone is first order in the acetone concentration.

• If, based on kinetic theories, we knew all the individual rate constants, we
could calculate the rate of acetone production.

• Alternately, we can use Equation 57 as the basis for designing experiments to
determine if the rate of production is first order in acetone and to determine
the magnitude of the first-order rate constant, keff.
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Nitric oxide example

Example 5.2: Production rate of oxygen

• Given the following mechanism for the overall stoichiometry

2NO2 + hν -→ 2NO+O2 (58)

derive an expression for the production rate of O2.

• Assume atomic O and NO3 radicals are QSSA species. The production rate
should be in terms of the reactant, NO2, and products, NO and O2.
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Nitric oxide example

NO2 + hν k1-→ NO+ O (59)

O+NO2
k2-⇀↽-
k−2

NO3 (60)

NO3 +NO2
k3-→ NO+O2 +NO2 (61)

NO3 + NO
k4-→ 2NO2 (62)

O+NO2
k5-→ NO+O2 (63)

• Let the species be designated as:

A1 = NO2, A2 = NO, A3 = O, A4 = NO3, A5 = O2
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Nitric oxide example

• The production rate of molecular oxygen is

R5 = k3c1c4 + k5c1c3 (64)

• Species 3 and 4 are QSSA species. Applying the QSSA gives

R3 = 0 = k1c1 − k2c1c3 + k−2c4 − k5c1c3 (65)

R4 = 0 = k2c1c3 − k−2c4 − k3c1c4 − k4c2c4 (66)

• Adding Equations 65 and 66

0 = k1c1 − k3c1c4 − k4c2c4 − k5c1c3 (67)

This result can be used to simplify the rate expression.
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Nitric oxide example

• Adding Equations 64 and 67

R5 = k1c1 − k4c2c4 (68)

• The intermediate NO3 concentration is found by solving Equation 65 for c3.

c3 = k1

k2 + k5
+ k−2

k2 + k5

c4

c1
(69)

• Substituting Equation 69 into Equation 66 and rearranging gives

c4 = k1k2c1

(k2k3 + k3k5)c1 + (k2k4 + k4k5)c2 + k−2k5
(70)
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• The rate expression now can be found using Equations 68 and 70

R5 = k1c1 − k1k2k4c1c2

(k2k3 + k3k5)c1 + (k2k4 + k4k5)c2 + k−2k5
(71)

�
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Summary of nitric oxide example

• Equation 71 is rather complex; but several terms in the denominator may be
small leading to simpler power-law reaction-rate expressions.

• One cannot produce forms like Equation 71 from simple collision and prob-
ability arguments.

• When you see these forms of rate expressions, you conclude that there was
a complex, multistep mechanism, which was reduced by the equilibrium as-
sumption or QSSA.
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Free-radical polymerization kinetics

Example 5.3: Free-radical polymerization kinetics

• Polymers are economically important and many chemical engineers are in-
volved with some aspect of polymer manufacturing during their careers.

• Polymerization reactions raise interesting kinetic issues because of the long
chains that are produced.

• Consider free-radical polymerization reaction kinetics as an illustrative exam-
ple.

• A simple polymerization mechanism is represented by the following set of
elementary reactions.
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Free-radical polymerization reactions
Initiation:

I
k1-→ R1

Propagation:

R1 +M
kp1
-→ R2

R2 +M
kp2
-→ R3

R3 +M
kp3
-→ R4

...

Rj +M
kpj
-→ Rj+1

...

Termination:

Rm + Rn
ktmn-→ Mm+n

• I is initiator

• M is monomer

• Mj is a dead polymer chain of length j

• Rj is a growing polymer chain of length j

95

Polymerization kinetics

• Initiation. In free-radical polymerizations, the initiation reaction generates
the free radicals, which initiate the polymerization reactions. An example is
the thermal dissociation of benzoyl peroxide as initiator to form a benzyl rad-
ical that subsequently reacts with styrene monomer to form the first polymer
chain.

• The termination reaction presented here is a termination of two growing poly-
mer chains by a combination reaction.
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Polymerization kinetics

• Develop an expression for the rate of monomer consumption using the as-
sumptions that kpj = kp for all j, and ktmn = kt is independent of the chain
lengths of the two terminating chains.

• You may make the QSSA for all growing polymer radicals.
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Solution

• From the propagation reactions we can see the rate of monomer consumption
is given by

RM = −
∞∑

j=1

rpj = −kpcM
∞∑

j=1

cRj (72)

• The rate of the jth propagation reaction is given by

rpj = kpcMcRj
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QSSA

• Making the QSSA for all polymer radicals, we set their production rates to
zero

rI − kpcR1cM − ktcR1

∑∞
j=1 cRj = 0

kpcR1cM − kpcR2cM − ktcR2

∑∞
j=1 cRj = 0

kpcR2cM − kpcR3cM − ktcR3

∑∞
j=1 cRj = 0

+ ... ... ...

rI − kt
∑∞
i=1 cRi

∑∞
j=1 cRj = 0

(73)
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Polymerization kinetics

• We solve Equation 73 for the total growing polymer concentration and obtain

∞∑

j=1

cRj =
√
rI/kt

• Substituting this result into Equation 72 yields the monomer consumption
rate

RM = −kpcM
√
rI/kt

• From the initiation reaction, the initiation rate is given by rI = kIcI, which
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upon substitution gives the final monomer consumption rate

RM = −kp
√
kI/kt

√
cIcM (74)
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Polymerization summary

• Consumption rate of monomer is first order in monomer concentration. We
can therefore easily calculate the time required to reach a certain conversion.

• Notice that this result also provides a mechanistic justification for the produc-
tion rate used in Chapter 4 in which monomer consumption rate was assumed
linear in monomer concentration.

�
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Ethane pyrolysis

Example 5.4: Ethane pyrolysis

• This example illustrates how to apply the QSSA to a flow reactor.

• We are interested in determining the effluent concentration from the reactor
and in demonstrating the use of the QSSA to simplify the design calculations.

• Ethane pyrolysis to produce ethylene and hydrogen also generates methane
as an unwanted reaction product.
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Ethane pyrolysis

• The following mechanism and kinetics have been proposed for ethane pyrol-
ysis [10]

C2H6
k1-→ 2CH3

CH3 + C2H6
k2-→ CH4 + C2H5

C2H5
k3-→ C2H4 + H

H+ C2H6
k4-→ H2 + C2H5

H+ C2H5
k5-→ C2H6
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Rate constants

• The rate constants are listed in the table

• The preexponential factor A0 has units of s−1 or cm3/mol s for first- and
second-order reactions, respectively.

Reaction A0 E(kJ/mol)

1 1.0× 1017 356
2 2.0× 1011 44
3 3.0× 1014 165
4 3.4× 1012 28
5 1.6× 1013 0

Table 2: Ethane pyrolysis kinetics.
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Reactor

• The pyrolysis is performed in a 100 cm3 isothermal PFR, operating at a con-
stant pressure of 1.0 atm and at 925 K.

• The feed consists of ethane in a steam diluent.

• The inlet partial pressure of ethane is 50 torr and the partial pressure of steam
is 710 torr.

• The feed flowrate is 35 cm3/s.
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Exact solution

• The exact solution involves solving the set of eight species mass balances

dNj
dV

= Rj (75)

subject to the feed conditions.

• The results for C2H6, C2H4 and CH4 are plotted in the next figure.

• The H2 concentration is not shown because it is almost equal to the C2H4

concentration.

• Note the molar flowrate of CH4 is only 0.2% of the molar flowrate of the other
products, C2H4 and H2.
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• The concentrations of the radicals, CH3, C2H5 and H, are on the order of 10−6

times the ethylene concentration.
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Exact solution
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Find a simplified rate expression

• Assuming the radicals CH3, C2H5 and H are QSSA species, develop an expres-
sion for the rate of ethylene formation.

• Verify that this approximation is valid.
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Solution

• The rate of ethylene formation is

RC2H4 = k3cC2H5 (76)

• Next use the QSSA to relate C2H5 to stable reactants and products

RCH3 = 0 = 2k1cC2H6 − k2cCH3cC2H6 (77)

RH = 0 = k3cC2H5 − k4cHcC2H6 − k5cHcC2H5 (78)

RC2H5 = 0 = k2cCH3cC2H6 − k3cC2H5 + k4cC2H6cH − k5cHcC2H5 (79)
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• Adding Equations 77, 78 and 79 gives

cH = k1

k5

cC2H6

cC2H5

(80)
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Simplified rate expression

• Inserting Equation 80 into Equation 78 yields

0 = k3k5c2
C2H5

− k4k1c2
C2H6

− k1k5cC2H6cC2H5

cC2H5 =

 k1

2k3
+
√√√√
(
k1

2k3

)2

+ k1k4

k3k5


 cC2H6 (81)

• Finally

RC2H4 = k3


 k1

2k3
+
√√√√
(
k1

2k3

)2

+ k1k4

k3k5


 cC2H6 (82)

114



• This can be rewritten as
RC2H4 = kcC2H6 (83)

in which

k = k3


 k1

2k3
+
√√√√
(
k1

2k3

)2

+ k1k4

k3k5




• At 925 K, k = 0.797 s−1.

• Let’s show that

cH = k1/k5

k1/2k3 +
√
(k1/2k3)2 + k1k4/k3k5

(84)

cCH3 =
2k1

k2
(85)
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Verification

• The validity of the QSSA is established by solving the set of ODEs

dNC2H6

dV
= −r1 − r2 − r4 + r5

dNH2

dV
= r4

dNCH4

dV
= r2

dNH2O

dV
= 0

dNC2H4

dV
= r3

subject to the initial molar flowrates.

• During the numerical solution the concentrations needed in the rate equa-
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tions are computed using

cC2H6 =
(

NC2H6

NC2H6 +NCH4 +NC2H4 +NH2 +NH2O

)
P
RT

(86)

and Equations 81, 84 and 85.

• Note we can neglect H, CH3 and C2H5 in the molar flowrate balance (Equa-
tion 86) because these components are present at levels on the order of 10−6

less than C2H6.
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Verification

• The next figure shows the error in the molar flowrate of ethylene that results
from the QSSA.

• The error is less than 10% after 3.1 cm3 of reactor volume; i.e., it takes about
3% of the volume for the error to be less than 10%.

• Similarly, the error is less than 5% after 5.9 cm3 and less than 1% after 18.6
cm3.

• The figure shows that the QSSA is valid for sufficiently large reactors, such
as 100 cm3.
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• If the reactor volume were very small (a very short residence time), such as
20 cm3, the QSSA would not be appropriate.
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Error in QSSA reduction
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Is QSSA useful here?

• What has been gained in this QSSA example? The full model solution requires
the simultaneous solution of eight ODEs and the reduced model requires
solving five ODEs.

• Both full and reduced models have five rate constants.

• However, the results for the exact solution demonstrate that CH4 is a minor
product at this temperature and this also would be found in the experimental
data.

• This suggests we can neglect CH4 in a species balance when computing mole
fractions.
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Further reduction

• Therefore the mass action statement

C2H6
k
-→ C2H4 +H2 (87)

does a reasonable job of accounting for the changes that occur in the PFR
during ethane pyrolysis.

• QSSA analysis predicts the ethane pyrolysis rate should be first order in
ethane concentration and the rate constant is k = 0.797 s−1.

• Using the reduced model

RC2H6 = −r RH2 = r
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we can solve the model analytically.

• The next figure shows that nearly equivalent predictions are made for the
simplified scheme based on the mass action statement, Reaction 87 using
Equation 83 for the rate expression.
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Exact and reduced model
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Summary of ethane pyrolysis example

• This simple example demonstrates that when one has all the kinetic param-
eters the full model can be solved and the QSSA is not useful.

• The reverse situation of knowing a mechanism but not the rate constants
could pose a difficult optimization problem when fitting all the rate constants
to data.

• The QSSA analysis provides a framework for simplifying the kinetic expres-
sions and removing difficult-to-estimate rate constants.

• In this example, one would expect a first-order expression to describe ade-
quately the appearance of ethylene

�
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Reactions at Surfaces

• Our goal is to provide the student with a simple picture of surfaces and to
provide a basis for evaluating heterogeneously catalyzed reaction kinetics
and reaction-rate expressions.

• Keep in mind the goal is to develop a rate expression from a reaction mech-
anism. This rate expression can be used to fit model parameters to rate data
for a heterogeneously catalyzed reaction.

• We present the elementary steps that comprise a surface reaction — adsorp-
tion, surface reaction and desorption.

• To streamline the presentation, the discussion is limited to gas-solid systems
and a single chemical isotherm, the Langmuir isotherm.
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• The interested student can find a more complete and thorough discussion of
adsorption, surface reaction and desorption in numerous textbooks [5, 18,
1, 8, 11, 3].
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Catalyst surface

• A heterogeneously catalyzed reaction takes place at the surface of a catalyst.

• Catalysts, their properties, and the nature of catalytic surfaces are discussed
in Chapter 7. For this discussion, we approximate the surface as a single
crystal with a known surface order.

• The density of atoms at the low-index planes of transition metals is on the
order of 1015 cm−2. Figure 11 presents the atomic arrangement of low-index
surfaces for various metals.
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Some common crystal structures of surfaces

bcc (100) fcc (110)

fcc (100)bcc (110)fcc (111)

Figure 11: Surface and second-layer (dashed) atom arrangements for several
low-index surfaces.
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• This figure illustrates the packing arrangement and different combinations
of nearest neighbors that can exist at a surface.

• An fcc(111) surface atom has six nearest-surface neighbors

• An fcc(100) surface atom has four nearest-surface neighbors

• An fcc(110) surface atom has two nearest-surface neighbors.

• The interaction between an adsorbing molecule and the surface of a single
crystal depends on the surface structure.
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CO oxidation example

• Consider the oxidation of CO on Pd, an fcc metal.

• The following mechanism has been proposed for the oxidation reaction over
Pd(111) [7]

O2 + 2S -⇀↽- 2Oads (88)

CO+ S -⇀↽- COads (89)

COads +Oads -→ CO2 + 2S (90)

in which the subscript ads refers to adsorbed species and S refers to vacant
surface sites.
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• This example illustrates the steps in a catalytic reaction — adsorption of re-
actants in Reactions 88 and 89, reaction of adsorbed components in Reac-
tion 90, and desorption of products also shown as part of Reaction 90.
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The adsorption process

• Adsorption occurs when an incident atom or molecule sticks to the surface.

• The adsorbing species can be bound weakly to the surface (physical adsorp-
tion) or it can be held tightly to the surface (chemical adsorption).

• A number of criteria have been applied to distinguish between physical and
chemical adsorption. In some cases the distinction is not clear. Table 3 lists
several properties that can be used to distinguish between physisorption and
chemisorption.
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Physical and chemical adsorption

Property Chemisorption Physisorption

amount limited to a monolayer multilayer possible
specificity high none
heat of adsorption typically > 10 kcal/mol low (2–5 kcal/mol)
activated possibly generally not

Table 3: Chemisorption and physisorption properties.

The most distinguishing characteristics are the degree of coverage and the
specificity.
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Physical and chemical adsorption

Chemisorption: Chemical adsorption occurs when a chemical bond or a partial
chemical bond is formed between the surface (adsorbent) and the adsorbate.
The formation of a bond limits the coverage to at most one chemisorbed
adsorbate for every surface atom. The upper limit need not have a one-to-
one adsorbate to surface atom stoichiometry; for example, saturation can
occur after one-third of all sites are occupied.

Physisorption: Physical adsorption occurs once the partial pressure of the ad-
sorbate is above its saturation vapor pressure. Physisorption is similar to a
condensation process and has practically no dependence on the solid surface
and the interaction between the adsorbate and adsorbent. Just as water va-
por condenses on any cold surface placed in ambient, humid air, a gas such
as N2 condenses on solids maintained at 77 K.
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CO Adsorption
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Figure 12: Schematic representation of the adsorption/desorption process.
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Langmuir model of adsorption

• The Langmuir adsorption model assumes that all surface sites are the same.

• As long as the incident molecules possess the necessary energy, and entropy
considerations are satisfied, adsorption proceeds if a vacant site is available.

• The Langmuir process also assumes adsorption is a completely random sur-
face process with no adsorbate-adsorbate interactions.

• Since all sites are equivalent, and adsorbate-adsorbate interactions are ne-
glected, the surface sites can be divided into two groups, vacant and occu-
pied.
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Langmuir model of adsorption

• The surface-site balance is therefore



Total number of
surface sites
per unit area



=




Number of
vacant sites
per unit area



+




Number of
occupied sites
per unit area




cm = cv +
ns∑

j=1

cj (91)

• Dividing by the total number of surface sites leads to the fractional form of
the site balance.

1 = cv
cm
+
ns∑

j=1

cj
cm
= θv +

ns∑

j=1

θj (92)

• The units for cm often are number of sites per gram of catalyst.
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Applying the Langmuir model

• Consider again Figure 12 showing the model of a surface consisting of vacant
sites and sites covered by chemisorbed CO.

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

Pd (111) surface

CO(g) CO(g)

kads kdes

141

Applying the Langmuir model

• The CO in the gas phase is adsorbing on the surface and desorbing from the
surface.

• The forward rate of adsorption and the reverse rate of desorption, are given
by

CO+ S
k1-⇀↽-
k−1

COads (93)

rads = k1cCOcv, rdes = k−1cCO

• The units of the rate are mol/time·area.

• The rate expressions follow directly from the reaction mechanism because
the reactions are treated as elementary steps.
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Adsorption at equilibrium

• Equating the adsorption and desorption rates at equilibrium gives

k1cCOcv = k−1cCO

• Solving for the surface concentration gives

cCO = k1

k−1
cCOcv = K1cCOcv (94)

• The conservation of sites gives

cv = cm − cCO (95)
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• Substituting Equation 95 into Equation 94 and rearranging leads to the Lang-
muir isotherm for single-component, associative adsorption

cCO = cmK1cCO

1+K1cCO
(96)
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Langmuir isotherm

• Dividing both sides of Equation 96 by the total concentration of surface sites
cm leads to the fractional form of the single component, associative Langmuir
adsorption isotherm.

θCO = K1cCO

1+K1cCO
(97)
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Langmuir isotherm
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Figure 13: Fractional coverage versus adsorbate concentration for different val-
ues of the adsorption constant, K.
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• Figure 13 presents the general shape of the fractional coverage as a function
of pressure for different values of K.

• In the limit K1cCO � 1, Equations 96 and 97 asymptotically approach cm and
1.0, respectively.

• Since adsorption is exothermic, K1 decreases with increasing temperature
and higher CO partial pressures are required to reach saturation.

• Figure 13 illustrates the effect of K on the coverage. In all cases the sur-
face saturates with the adsorbate; however, the concentration at which this
saturation occurs is a strong function of K.

• Single component adsorption is used to determine the number of active sites,
cm.
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Fitting parameters to the Langmuir isotherm

• The adsorption data can be fit to either the Langmuir isotherm (Equation 96)
or to the “linear” form of the isotherm.

• The linear form is obtained by taking the inverse of Equation 96 and multi-
plying by cC0

cCO

cCO
= 1
K1cm

+ cCO

cm
(98)

• A plot of the linear form provides 1/(K1cm) for the intercept and 1/cm for
the slope.
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CO data example

Example 5.5: Fitting Langmuir adsorption constants to CO data

• The active area of supported transition metals can be determined by adsorb-
ing carbon monoxide. Carbon monoxide is known to adsorb associatively on
ruthenium at 100◦C.

• Use the following uptake data for the adsorption of CO on 10 wt % Ru sup-
ported on Al2O3 at 100◦C to determine the equilibrium adsorption constant
and the number of adsorption sites.

PCO (torr) 100 150 200 250 300 400
CO adsorbed (µmol/g cat) 1.28 1.63 1.77 1.94 2.06 2.21
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Solution

• The next two figures plot the data for Equations 96 and 98, respectively.

• From the data for the “linear” model, we can estimate using least squares the
slope, 0.35 g/µmol, and the zero concentration intercept, 1.822 cm3/g, and
then calculate

K1 = 0.190 cm3/µmol

cm = 2.89 µmol/g

�
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Original model
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Figure 14: Langmuir isotherm for CO uptake on Ru.
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Linear model
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Figure 15: Linear form of Langmuir isotherm for CO uptake on Ru.
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Multicomponent adsorption

• We now consider multiple-component adsorption.

• If other components, such as B and D, are assumed to be in adsorption-
desorption equilibrium along with CO, we add the following two reactions

B+ S
k2-⇀↽-
k−2

Bads

D+ S
k3-⇀↽-
k−3

Dads

• Following the development that led to Equation 94, we can show the equilib-
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rium surface concentrations for B and D are given by

cB = K2cBcv (99)

cD = K3cDcv (100)

• The site balance becomes

cv = cm − cCO − cB − cD (101)
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Multicomponent adsorption

• Substituting Equation 101 into Equation 94 and rearranging leads to a differ-
ent isotherm expression for CO.

cCO = cmKCOcCO

1+K1cCO +K2cB +K3cD
(102)

• The terms in the denominator of Equation 102 have special significance and
the magnitude of the equilibrium adsorption constant, when multiplied by
the respective concentration, determines the component or components that
occupy most of the sites.

• Each of the terms Kicj accounts for sites occupied by species j.
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• From Chapter 3 we know the equilibrium constant is related to the expo-
nential of the heat of adsorption, which is exothermic. Therefore, the more
strongly a component is chemisorbed to the surface, the larger the equilib-
rium constant.

• Also, if components have very different heats of adsorption, the denominator
may be well approximated using only one Kicj term.
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Dissociative adsorption

• The CO oxidation example also contains a dissociative adsorption step

O2 + 2S
k1-⇀↽-
k−1

2Oads (103)

• Adsorption requires the O2 molecule to find a pair of adsorption sites and
desorption requires two adsorbed O atoms to be adjacent.

• When a bimolecular surface reaction occurs, such as dissociative adsorption,
associative desorption, or a bimolecular surface reaction, the rate in the for-
ward direction depends on the probability of finding pairs of reaction centers.
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• This probability, in turn, depends on whether or not the sites are randomly
located, and whether or not the adsorbates are mobile on the surface.
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Pairs of vacant sites

• The probability of finding pairs of vacant sites can be seen by considering
adsorption onto a checkerboard such as Figure 16.
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A B

Figure 16: Two packing arrangements for a coverage of θ = 1/2.

• Let two sites be adjacent if they share a common line segment (i.e., do not
count sharing a vertex as being adjacent) and let θ equal the fraction of sur-
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face covered.

• The checkerboard has a total 24 adjacent site pairs, which can be found by
counting the line segments on adjoining squares.
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Pairs of vacant sites

• Figure 16 presents two possibilities where half the sites (the shaded squares)
are covered.

• For Figure 16A the probability an incident gas atom striking this surface in
a random location hits a vacant site is 1− θ and the probability a gas-phase
molecule can dissociate on two adjacent vacant sites is p = 0.

• Figure 16B has 10 vacant adjacent site pairs. Therefore, the probability of
dissociative adsorption is p = 10/24. The probability of finding vacant ad-
sorption sites is 0 ≤ p ≤ 1/2 for these two examples because the probability
depends on the packing arrangement.
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Random packing

• We next show for random or independent packing of the surface, the proba-
bility for finding pairs of vacant adjacent sites is p = (1− θ)2.

• The probability for random packing can be developed by considering five
different arrangements for a site and its four nearest neighbors, with the
center site always vacant

21 3 4 5

• The probability of any configuration is (1−θ)nθm, in which n is the number
of vacant sites and m is the number of occupied sites.

166



Random packing

• Arrangement 1 can happen only one way.

• Arrangement 2 can happen four ways because the covered site can be in four
different locations.

• Similarly, arrangement 3 can happen six different ways, 4 can happen four
ways, and 5 can happen only one way.

• Therefore, the probability of two adjacent sites being vacant is

p1 + 4p2 + 6p3 + 4p4 + 0p5 (104)
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Random packing

• An incoming gas molecule can hit the surface in one of four positions, with
one atom in the center and the other pointing either north, south, east or
west.

• For random molecule orientations, the probabilities that a molecule hits the
arrangement with a correct orientation are: p1, (3/4)4p2, (1/2)6p3 and
(1/4)4p4.

• Therefore, the probability of a successful collision is

p = p1 + 3p2 + 3p3 + p4
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Random packing

• Use (1− θ)nθm for p1, p2, p3, p4

p = (1− θ)5 + 3(1− θ)4θ + 3(1− θ)3θ2 + (1− θ)2θ3

p = (1− θ)2[(1− θ)3 + 3(1− θ)2θ + 3(1− θ)θ2 + θ3]

• Using a binomial expansion, (x +y)3 = x3+ 3x2y + 3xy2+y3, the term in
brackets can be written as

p = (1− θ)2[(1− θ)+ θ]3

p = (1− θ)2
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Random packing — summary

• Therefore, we use θv·θv to represent the probability of finding pairs of vacant
sites for dissociative adsorption.

• The probability of finding other pair combinations is the product of the frac-
tional coverage of the two types of sites.
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Dissociative adsorption

• Returning to Reaction 103

O2 + 2S
k1-⇀↽-
k−1

2Oads

• We express the rates of dissociative adsorption and associative desorption of
oxygen as

rads = k1c2
vcO2 (105)

rdes = k−1c2
O (106)

• The units on k1 are such that rads has the units of mol/time·area.
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• At equilibrium, the rate of adsorption equals the rate of desorption leading
to

cO =
√
K1cO2 cv (107)

• Combining Equation 107 with the site balance, Equation 91, and rearranging
leads to the Langmuir form for single-component dissociative adsorption

cO =
cm
√
K1cO2

1+
√
K1cO2

(108)
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Langmuir isotherm for dissociative adsorption

• The Langmuir isotherms represented in Equations 96 and 108 are different
because each represents a different gas-surface reaction process.

• Both share the asymptotic approach to saturation at sufficiently large gas
concentration, however.
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Equilibrium CO and O surface concentrations

• Determine the equilibrium CO and O surface concentrations when O2 and CO
adsorb according to

CO+ S
k1-⇀↽-
k−1

COads

O2 + 2S
k2-⇀↽-
k−2

2Oads
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Solution

• At equilibrium adsorption rate equals desorption rate

r1 = 0 = k1cCOcv − k−1cCO

r2 = 0 = k2cO2c
2
v − k−2c2

O

• Solving for the surface coverages in terms of the concentration of vacant sites
gives

cCO = K1cCOcv (109)

cO =
√
K2cO2cv (110)
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• The remaining unknown is cv, which can be found using the site balance

cm = cv + cCO + cO (111)
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Solution

• Combining Equations 109–111 yields

cv = cm
1+K1cCO +

√
K2cO2

(112)

• We next substitute the vacant site concentration into Equations 109 and 110
to give the surface concentrations in terms of gas-phase concentrations and
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physical constants

cCO = cmK1cCO

1+K1cCO +
√
K2cO2

cO =
cm
√
K2cO2

1+K1cCO +
√
K2cO2
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Production rate of CO2

• Find the rate of CO2 production using the following reaction mechanism

CO+ S
k1-⇀↽-
k−1

COads

O2 + 2S
k2-⇀↽-
k−2

2Oads

COads +Oads
k3-→ CO2 + 2S

• Assume the O2 and CO adsorption steps are at equilibrium.

• Make a log-log plot of the production rate of CO2 versus gas-phase CO con-
centration at constant gas-phase O2 concentration.

• What are the slopes of the production rate at high and low CO concentrations?
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Solution

• The rate of CO2 production is given by

RCO2 = k3cCOcO (113)

• The surface concentrations for CO and O were determined in the preceding
example,

cCO = cmK1cCO

1+K1cCO +
√
K2cO2

cO =
cm
√
K2cO2

1+K1cCO +
√
K2cO2

180



Solution

• Substituting these concentrations onto Equation 113 gives the rate of CO2

production

RCO2 =
k3c2

mK1cCO

√
K2cO2(

1+K1cCO +
√
K2cO2

)2 (114)

• For ease of visualization, we define a dimensionless production rate

R̃ = RCO2/(k3c2
m)

and plot this production rate versus dimensionless concentrations of CO and
O2 in the next figure.
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Production rate of CO2
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Production rate of CO2

• Notice that the production rate goes to zero if either CO or O2 gas-phase
concentration becomes large compared to the other.

• This feature is typical of competitive adsorption processes and second-order
reactions. If one gas-phase concentration is large relative to the other, then
that species saturates the surface and the other species surface concentration
is small, which causes a small reaction rate.

• If we hold one of the gas-phase concentrations constant and vary the other,
we are taking a slice through the surface of the figure.

• The next figure shows the result when each of the dimensionless gas-phase
concentrations is held fixed at 1.0.
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Production rate of CO2
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Production rate of CO2

• Notice again that increasing the gas-phase concentration of either reactant
increases the rate until a maximum is achieved, and then decreases the rate
upon further increase in concentration.

• High gas-phase concentration of either reactant inhibits the reaction by
crowding the other species off the surface.

• Notice from the figure that log R̃ versus log(K1cC0) changes in slope from 1.0
to −1.0 as CO concentration increases.

• As the concentration of O2 increases, the slope changes from 0.5 to −0.5.
These values also can be deduced by taking the logarithm of Equation 114.

185

Hougen-Watson Kinetics

• Rate expressions of the form of Equation 114 are known as Hougen-Watson
or Langmuir-Hinshelwood kinetics [9].

• This form of kinetic expression is often used to describe the species produc-
tion rates for heterogeneously catalyzed reactions.
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Summary

We introduced several concepts in this chapter that are the building blocks
for reaction kinetics.

• Most reaction processes consist of more than one elementary reaction.

• The reaction process can be represented by a mass action statement, such
as C2H6 -→ C2H4 +H2 in Example 5.4, but this statement does not describe

how the reactants convert into the products.

• The atomistic description of chemical events is found in the elementary reac-
tions.

• First principles calculations can be used to predict the order of these elemen-
tary reactions and the values of their rate constants.

187

Summary

• The reaction order for elementary reactions is determined by the stoichiom-
etry of the reaction

ri = ki
∏

j∈Ri
c
−νij
j − k−i

∏

j∈Pi
c
νij
j (115)

• Two assumptions are generally invoked when developing simplified kinetic
rate expressions:

1. some of the elementary reactions are slow relative to the others; the fast
reactions can be assumed to be at equilibrium.
If only one step is slow, this single reaction determines all production rates,
and is called the rate-limiting step;
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2. the rate of formation of highly reactive intermediate species can be set to
zero; the concentration of these intermediates is found from the resulting
algebraic relations rather than differential equations.

189

Summary

• Reactions at surfaces

1. The chemical steps involved in heterogeneous reactions (adsorption, des-
orption, surface reaction) are generally treated as elementary reactions.

2. In many cases, one reaction is the slow step and the remaining steps are
at equilibrium.

3. For heterogeneous reactions, we add a site balance to account for the va-
cant and occupied sites that take part in the reaction steps.
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Notation

aj activity of species j
cj concentration of species j
cjs steady-state concentration of j
cj concentration of species j on the catalyst surface

cm total active surface concentration (monolayer coverage concentration)

cv concentration of vacant surface sites

fj fugacity of species j
f ◦j standard-state fugacity of pure species j
Fj flux of species j from the gas phase to the catalyst surface

gei degeneracy of the ith electronic energy level

h Planck’s constant

I moment of inertia for a rigid rotor

Ii moment of inertia about an axis
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kB Boltzmann constant

K reaction equilibrium constant

m mass of a molecule (atom)

Mj molecular weight of species j
nj moles of species j
Nj molar flowrate of species j
p probability of finding adjacent pairs of sites

P total pressure

Pj partial pressure of species j
Pi product species in reaction i(
q
V

)
j

molecular partition function of species j
qelec electronic partition function

qrot rotational partition function

qvib vibrational partition function

Q partition function

Qf volumetric flowrate at the reactor inlet

ri reaction rate for ith reaction
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R gas constant

Rj production rate for jth species

Ri reactant species in reaction i
t time

T absolute temperature

V(r) intermolecular potential energy

VR reactor volume

z compressibility factor

εi energy of the ith electronic level

εi extent of the ith reaction

θj fractional surface coverage of species j
θv fractional surface coverage of vacant sites

νij stoichiometric number for the jth species in the ith reaction

σ symmetry number, 1 for a heteronuclear molecule, 2 for homonuclear molecule

τ lifetime of a component

φj fugacity coefficient for species j
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