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ABSTRACT. This paper presents an adaptive finite-element technique for the
analysis of monopolar ionized field in conductor-to-plane configurations with-
out resort to Deutsch’s assumption. A new iterative-element ballooning tech-
nique is proposed to solve Poisson’s equation wherein the commonly used arti-
ficial boundary around the transmission line conductor is simulated at infinity.
The proposed technique seeks a solution to only one second-order partial diffe-
rential equation (PDE) rather than a solution to a nonlinear third-order PDE or
a solution to two simultaneous second order PDEs as reported in the literature.

The calculated corona current and the ground plane current-density agreed
well with those measured experimentally for a laboratory model. Accuracy and
simplicity in programming characterize the proposed method.

1. Introduction

High voltage DC has many advantages over conventional AC lines for long distance
power transmission. Recently, the economic feasibility of DC transmission has
increased with the development of the HV terminal equipment. One of the problems
associated with hvdc transmission is the corona occurring on the transmission line
conductors and the associated power loss, audible noise, radio interference and televi-
sion interference.

Many attempts were made to solve the ionized field problem using the finite-element
technique (FET)[1-10]. Among all of these attempts, only Abdel-Salam and Al-Hamouz[8,9]
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included the ion diffusion in the solution of the describing equations. Other attempts[11,12]

included ion diffusion but using other numerical techniques. Ghione and Graglia[11]

adopted the finite-boxes technique for the solution of ionized field in conductor-to-plane
configurations and wire-duct precipitators. Levin and Hoburg[12] used the donor cell-
finite element technique for the solution of the ionized field in wire-duct precipitators.

The efficient finite-element grid generated from quadrangles produced by the inter-
section of field lines with equipotential contours proposed in[9,10] is used in the present
analysis. In order to satisfy the continuity condition and to estimate the discrete space-
charges at the grid nodes, the interelectrode spacing was divided into flux-tubes by field
lines. The axis of each flux-tube is also a field line along which the grid nodes are locat-
ed at the intersections with the equipotential contours. Along these flux-tubes, the ions
are driven from the coronating conductor to the ground electrode. In comparison with
previous approaches for grid generation[5-7], the proposed grid[9,10] makes it easier to
formulate the current continuity condition and current density equation along these
tubes.

It is well known that the FET calls for bounded region in which the describing equa-
tions are to be solved. All attempts reported before[1-5,7-10] assumed fixed artificial
boundary around the transmission line conductor. The x and y-coordinates of this artifi-
cial boundary are usually few multiples of the transmission line height above the ground
plane. In the literature[13-17], a technique called ballooning has been proposed to simu-
late this artificial boundary at infinity for electromagnetic field problems. Davis and
Hoburg[6] adopted the ballooning technique for the solution of ionized field in
conductor-to-plane configurations but did not report details of their finite-element bal-
looning formulation.

In the present paper, a new iterative finite-element ballooning technique (FEBT) is
proposed as a numerical tool to solve Poisson’s equation. In addition, the constancy of
the conductor surface field at the corona onset value is implemented directly as a boun-
dary condition into the proposed FEBT formulation. Moreover, an experimental set-up
has been built to verify the results predicted by the proposed algorithm.

2. Mathematical Description of a Monopolar Ionized Field

The equations that constitute the mathematical description of the monopolar ionized
field in air are:

(1)

(2)

(3)

(4)

where ε0 is the permittivity of free space k is the ion mobility.
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Equations (1)-(4) are respectively, Poisson’s  equation, current continuity condition,
the equation of current density and the equation relating the electric field to the potential.

These differential equations must be solved for the potential ϕ and the space-charge
density ρ, both being functions of the space coordinates. 

In reality, it is extremely difficult to find an exact solution to these equations due to
their nonlinear nature. However, there are analytical solutions for simple geometries
such as spherical and coaxial configurations[1,18]. All attempts for solving these diffe-
rential equations were based on some simplifying assumptions[19-21]. The most com-
mon ones are:

(a) The thickness of the ionization layer around the conductor is so small to be disre-
garded with respect to the interelectrode spacing. The entire electrode spacing is filled
with monopolar space-charge of the same polarity as the coronating conductor.

(b) The space-charge affects only the magnitude and not the direction of the electric
field. This assumption was suggested at first by Deutsch and later on referred to as
‘Deutsch’s assumption’.

(c) The mobility of ions is constant (independent of field intensity),

(d) Diffusion of ions is neglected, and

(e) The surface field of the coronating conductor remains constant at the onset value
E0, which is known as Kaptzov’s assumption[19] and before as Peek’s assumption. For
the conductor-to-plane configurations, E0 is expressed in kV/m as[22]:

(5)

where R is the conductor radius in cm and η is the surface irregularity (roughness) fac-
tor (= 1 for smooth conductors) and at a relative air density of 1.

3. Proposed Method of Analysis

In this paper, a new iterative finite-element ballooning technique is proposed to solve
the ionized field problem in conductor-to-plane configurations without resort to
Deutsch’s assumption. In the following three subsections, the boundary conditions, sim-
plifying assumptions and procedure of solution are explained.

3.1 Boundary Conditions

Solution of (1)-(4) which describe the space-charge ionized field requires the follow-
ing boundary conditions :

(i) The potential on the coronating conductor is equal to the applied voltage as the
voltage drop across the ionization layer is relatively very small.

(ii) The potential on the grounded plane is zero, and
(iii) The magnitude of the electric field at the surface of the coronating conductor is

assumed to be constant at the onset value E0 ,
(iv) The potential values of the nodes on the artificial boundary defining the FET

bounded-region are updated and utilized in the finite-element formulation.

  E R0
230 1 9 06 10= + × ( ( . / ) )–η
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In order to investigate the impact of adopting the last boundary condition on the accu-
racy of the algorithms proposed before [8-10], the Ballooning technique by which the
fictitious boundaries are extended to infinity is applied for the monopolar conductor-to-
plane configurations as discussed in detail in section 3.3

3.2 Simplifying Assumptions

The monopolar ionized field equations are solved in conductor-to-plane configura-
tions where assumption (b) (of the list given in section 2) is waived in a simple manner.
The constancy of the electric field at the surface of the coronating conductor at its onset
value, assumption (e), is replaced by the assumption that the electric field, Ecrit , is as-
sumed to be function of the applied voltage, i.e.

Ecrit = E0 f1 (V/V0f) (6 – a)

where the function f1 is assumed to have the following form[2]:

(6 – b)

where the voltage V0f for a smooth conductor-to-plane configuration is given as:

V0f = E0R ln(2H/R), H  >>  R (6 – c)

3.3 Procedure

The investigated conductor-to-plane configuration has a conductor radius R and
height H above the ground plane, Fig. (1). The proposed method of analysis is described
in the following procedure, Fig. (2).
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FIG. 1. Conductor-to-plane configuration.
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FIG. 2. Block diagram describing the proposed method of analysis.

Step (1): First Grid Generation and Flux-Tube Formation

The first grid is generated in the absence of space-charge and, therefore, the electric
field  is a space-charge free one due to the applied voltage V. To map the space-charge
free field lines in the space, the conductor is simulated by a single-line charge displaced
from its axis[9,23]. Due to symmetry about the Y-axis for the conductor-to-plane config-
uration, one half of the field lines is mapped where M nodes are selected on half of the
circumference of the conductor forming the nodes from which the field lines emanate[9].



A. Mufti et al.174

Therefore, the total number of field lines in the whole space is 2(M-1). The field is
mapped in a region around the conductor which is defined by the fictitious boundaries
X1-X2 and Y1-Y2 where X1-X2 and Y1-Y2 are located at 3.5-5.5 times the conductor
height H, Fig. (1). This choice was found to be satisfactory in the light of the fact that
the computed results did not change[9] for larger values of X1-X2 and Y1-Y2. In this
paper, these fictitious boundaries are simulated at infinity as discussed in detail in sec-
tion (5).

The total number of equipotential contours to be mapped is N. The conductor surface
is equipotential at the applied voltage value and the ground plane is also equipotential at
the zero value. Therefore, N-2 equipotential contours are traced in the interelectrode
spacing, starting close to the conductor. Due to the fictitious boundaries X1-X2 and Y1-
Y2, some of the field lines and equipotential contours will terminate at these boundar-
ies.

The point  of intersection between the ith field line and the j th equipotential contour
represents the node (i, j) of the proposed grid for the conductor-to-plane configuration.

The potential ϕi,j  and electric field Ei,j at each node (i, j), in the absence of space-
charge, are denoted by Φ(1) and E(1) i.e. the first estimate of potential and field values at
nodes.

Step (2): First Estimate of the Space-Charge Density

For a first estimate of the space-charge density values at the proposed FE grid nodes,
the space-charge density values are estimated by satisfying the continuity equation
along each flux-tube. Simply, the continuity equation is satisfied by utilizing the fact
that the current flowing in each flux-tube is constant.

The initial guess  of the space-charge density located at node (i, 1) around the periph-
ery of the coronating conductor is assumed[9] to follow eqn. (7).

ρi, 1 = ρe cos((θi)/2), i = 1,2,3, ... M (7)

where ρe is the value of ρi, 1 at θi = 0. The value of ρe was estimated[8] by eqn. (8)

(8)

The corona onset voltage value V0 is obtained from eqn. (9), as:

(9)

Eg is the space charge free electric field at the ground plane and
Ecrit is determined from eqn. (6 - a).

As the current flowing in each flux-tube is constant along the tube[10], one can write
the continuity equation for the i th flux-tube as follows :

  
ρ εe

gE H

E R
V V V H V V V=

0
0 0 0

2
04 5 4( – ) /[ ( – / )]

  
V R E

H

Rcrit0
2=   ln 
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(13)

ρi, 1Ei, 1(Ai, 1)n = ρi, 2Ei, 2(Ai, 2)n = ρi, NEi, N(Ai, N)n , i = 1, 2, ... M (10)

where the ion mobility is assumed constant.

In other words,

(11)

where:

(Ai, j)n is the per unit length cross-sectional area of the ith flux-tube at the jth equipo-
tential contour along the direction normal to the electric field Ei, j, and 

Ei, j is the magnitude of the nodal field obtained in step (1).

Equation (11) gives the first estimate of the space-charge density at all nodes of the
grid.

Step (3): Finite-Element Ballooning Solution of Poisson’s Equation

The potential ϕ within each element is approximated as a linear function of coordi-
nates[24], namely:

ϕ = ϕ eWe = ϕp wb + ϕs ws + ϕ t wt (12)

with p, s and t represent the nodes of the element e and W is the corresponding shape
function.

For known values of ρ at nodes, Poisson’s equation is solved by minimizing an ener-
gy function with respect to each nodal potential value. This minimization leads to a set
of simultaneous equations for values of ϕ at nodes. The array of nodal potentials is de-
noted by Φ(m), representing the potentials in the mth iteration.

The constancy of the conductor surface field at Ecrit is implemented directly into the
FE formulation. This is achieved by noting that (ϕ i , 1 – ϕ i, 2)/∆ri = Ecrit where ∆i is the
radial distance between the first two nodes along the axis of any flux-tube,[9] and is
much smaller than the radius of the coronating conductor. Since the potential ϕ i, 1 is the
applied voltage which is known, then ϕ i, 2 , the potential at node (i, 2), i.e. the i th node
along the second equipotential contour is also known.

Mathematical  Formulation of the Ballooning Technique

Consider the monopolar conductor-to-plane transmission line configuration shown in
Fig. (3). For the region RI with the boundary Γ0, the FE global matrix equation can be
formulated[24] as: 

   
ρ ρi j i

i i n

i j i j n
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where

Φ0 is the potential vector on the boundary Γ0,

ΦR is the potential vector on the nodes of the interior region RI,

SRR , SΓ0Γ0 are the self stiffness sub-matrixes in the interior region RI and on the
boundary Γ0, respectively.

SΓ0R , SRΓ0 are the mutual stiffness sub-matrices between the interior region RI and
the boundary Γ0, and

FR , F0 are the assembled free terms due to the boundary conditions.

FIG. 3. The conductor-to-plane FE grid is bounded exterior region for the application of the ballooning tech-
nique.
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Assume that the region exterior to RI contains only free space, hence the external
field is purely Laplacian. The first step in the representation of the exterior region is to
define a finite-element mesh for an annular region surrounding the region RI. This
annular region has certain properties which can be summarized as follows:

(1) The number of nodes on the inner and outer boundaries are the same and lie on
lines radiating from a star point, which is the point directly underneath the conductor at
ground plane, Fig. (3).

(2) The outer boundary nodes for each successive ballooning annuals have a one-to-
one correspondence with those nodes on the original boundary, Γ0. This leads to useful
geometric similarity properties applicable to the FE triangles in the ballooning region.

(3) There is a fixed mapping ratio α between the radii of the outer and inner sets of
nodes of every annuals, measured from the star point.

Such an exterior annular region with boundary annuli Γ0 , Γ1 is shown in Fig. (4)
around the fictitious boundaries X1-X2 and Y1-Y2.

FIG. 4. Two-dimensional FE solution region with ballooning.
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If the coordinates of the points on the inner boundary are denoted by (xn , yn)(0), then
the coordinates of the outer boundary nodes are expressed as:

 (xn , yn)(1) = α( (xn , yn)(0) (14)

where α is the mapping ratio for the ballooning technique.

The FE matrix equation for nodes on Γ0 , and Γ1 is

(15)

where S is the stiffness matrix of the first ballooning layer (i.e. layer between the
boundaries Γ0 and Γ1).

(16)

and i, j = p, s, t, the vertices of the element e, and

rp = xt – xs , rs = xp – xt , rt = xs – xp

qp = ys – yt ,  qs = yt – yp , qt = yp – ys

and Ae is the area of the triangular element e expressed as

(17)

In the same way, a second annuals for the nodes on Γ1 , and Γ2 can be constructed and
the corresponding finite-element equation is expressed as:

(18)

where T 1 is the stiffness matrix of the second ballooning layer.

This second annuals is geometrically similar to the first and has the same mapping ratio,
hence

(xn , yn)(2) = α(xn , yn)(1) = α2(xn , yn)(0) (19)

Applying the geometric similarity given in equation (19) yields a set of elemental coef-
ficients, s , eqn. (17), which remains unchanged as one progresses from one balloon-
ing annuals to the next. This means that the matrix T1 in eqn. (18) is equal to the matrix
S in eqn. (16). That is, S  is identical to T1, or

(20)

The two annuli can be combined to yield:
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(23)

(24)

(25)

(26)

(27)

where Φ1 are the nodal potentials on the common boundary Γ1, between the two annuli.
The equations for Φ0, Φ1, and Φ2 may be solved to eliminate Φ1, using the fact that :

substituting eqn. (22) into eqn. (21) yields:

Hence:

The matrix equation of (23) has the same form of eqn. (16) but relates the two com-
bined annuli, where the mapping ratio is α2.

From the (i – 1)th recursive ballooning step, applying the method given in eqn. (23)
recursively, one could obtain:

which relates the potentials of the nodes on the boundaries Γ0 and Γi .

For the ith application, one can obtain in analogy with eqn. (18):

which relates the potentials of the nodes on the boundaries Γi and Γi +1.

Due to the geometric similarity property of the successive ballooning layers, we can
write that:

Combining eqns. (25) and (26) and eliminating Φi , the following recursive relation for
the ballooning technique can be written:
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Finally, the S11 terms are attached to the outer modes of the interior solution region.
That is, matrix eqn. (13) is combined with the matrix eqn. (31), yielding the following
global finite-element system of equations:

Equation (29) relates the nodal potentials on the Γ0 and Γi+1 boundaries and has a map-
ping ratio of α(i+1).

A new annular region can be added to the present outer nodes and the process can be
repeated. Hence a recursive system has been defined with the outer boundary moving
away with the following geometric progression:

α1, α2, α3, ... , αi (30)

After m applications, one can write:
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It is quite clear that eqn. (24) is directly obtained from eqn. (28) when i = 1.

Hence, for the ballooned exterior region, we can write the following equation
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where:

ΦR is the vector of nodal potentials in the interior region RI,

Φ0 is the vector of nodal potentials on the boundary Γ0, and

Φm is the vector of nodal potentials on the boundary Γm

If Γm is far enough, then Φm approaches 0 and hence Sm
21 approaches 0. Subsequently

eqn. (32) becomes
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In eqn. (32), as the number of ballooning layers (or annuli) increases, the coefficients
of the matrix Sm

12 converges (approaches) to zero.

Proposed Finite-Element Ballooning Algorithm

The steps of the proposed finite-element ballooning algorithm are as follows :
(1) Using the conventional FE technique, compute the global stiffness matrix SRI

(for the interior region) and the global stiffness F, eqn. (13).
(2) Choose a proper number of ballooning layers, m.
(3) Compute the matrix S1

ext , eqns. (16) and (17).
(4) Set i = 1.
(5) Let T i = Sext .
(6) Use the main recursive relation (eqn. 28) to combine the matrix S i

ext with T i

and obtain Si+1.ext

(7) If i < m, i = i +1, go to (5).
(8) Incorporate the matrix Sm

11 into the FE global matrix SRI as in eqn. (33).
(9) Solve the FE equation given in eqn. (33).

(10) End the finite-element ballooning solution.

It is worthy to mention that the potentials estimated from eqn. (33) are [ΦR] of the
nodes in the interior region RI and [Φ0] of the nodes on the boundary, Γ0, located on the
X1-X2 and Y1-Y2 boundaries. These estimated nodal potentials are expected to be
more accurate than those estimated by previous attempts[8-10] since the FE ballooning
algorithm extends his boundary to infinity. On the other hand, in previous attempts[8-10]

the potential values at the nodes located on the X1-X2 and Y1-Y2 boundaries are esti-
mated during the field mapping process.

Step (4): Correction of the Space-Charge Density

Comparing the last two estimates of the potential at the (i, j)th node ϕ(1) andi, j

ϕ(l +1) , a nodal potential error en relative to the average value ϕav of the potential at thati, j
node is defined as

where

If the maximum of en along the axis of the ith flux-tube exceeds a pre-specified value,
δ1, correction of the space-charge density values at the last node (corresponding to that
ith flux-tube) located either on the ground plane or on the Γ0 boundary is made accord-
ing to the maximum nodal error as in eqn. (36):

where g is an accelerating factor, taken equal to 0.5. The error value δ1 depends on the
required accuracy (assumed 0.5% in the present paper).

The space-charge density at the other nodes along each flux-tube is corrected to keep
the continuity condition of current satisfied, i.e.

  
en i j

l
i j
l

av= +| – | /,
( )

,
( )ϕ ϕ ϕ1

  
ϕ ϕ ϕav i j

l
i j
l= + +( ) /,

( )
,
( )1 2

  
ρ ρ ϕ ϕ ϕi N i N i j

l
i j
l

avnew old
g i M, , ,

( )
,
( )[ max( – ) / ] ,  , ,= + =+1 1 21 L
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(35)
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The space-charge density values at the conductor surface, ρi, 1, i =  1, 2, ... M, are de-
termined by extrapolation.

Step (5): Estimation of Discrete Space-Charges at Grid Nodes

The distributed space-charges are represented by discrete line charges extending par-
allel to the coronating conductor and located at the grid nodes. Hence, the charge per
unit length at node (i, j) is:

Qi, j = ρi, j vi, j (38)

where vi, j is the volume surrounding the node (i, j).

Step (6): Grid Updating

In the next grid generations, the traced field lines and equipotential contours are not
only due to the applied voltage, but also due to the space-charges estimated at the grid
nodes in step (5). Also, the recent space-charge density values around the periphery of
the coronating conductors, ρi, 1, i = 1,2, ... M are the values obtained by the end of the
last grid generation using eqn. (11).

Steps (1-6) are repeated until the maximum mismatch in the nodal space-charge den-
sity values between two successive grid generations is less than a pre-specified error δ2
(assumed 0.5% in the present paper).

Step (7): Calculation of Corona Current

For each applied voltage above the onset value, the corona current is equal to the sum
of the currents flowing in the 2(M – 1) flux-tubes, i.e.

(39)

As J – kρE, then

(40)

In eqn. (40), the first and second terms represent the current in the first and Mth flux-
tube. The summation stands for the total current conducted in the remaining M – 2 flux-
tubes in the right or left half plane.

4. Experimental Set-Up and Procedure

Figure (5) shows a plan-view and a picture of the designed experimental arrangement
which consists of
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1) A grounded aluminum plate to simulate the ground-plane,
2) A conductor which represents the transmission line stretched between two isolat-

ing vertical supports,
3) A HVDC source to stress the line conductor, and
4) Two microammeters A1 and A2 for measuring the corona current and the ground-

plane current density.

The grounded plate, 3.6 × 2.44 m2 in dimension, was made of aluminum sheet, 1 mm
in thickness. To maintain the aluminum plate horizontally, it was fixed to a wooden
plate of the same size at 0.50 m above the laboratory concrete floor. In order to measure
the current density distribution underneath the transmission line, the aluminum plate
was divided into 69 strips, each of 2.44 × 0.05 m2 and separated from each other by a
distance of 1 mm. Each strip is grounded through the microammeter A2 to measure the
corona current received by this strip. With the aid of the panel, Fig. (5), placed in the
control room outside the laboratory, the microammeter A2 can serve in measuring the
current flowing in all strips by switching it from strip to strip.

Transmission line conductors of different diameters (1.5 mm, 2.5 mm and 3.1 mm)
are tested. In order to vary the transmission line height above the grounded plate, the
height of the insulating supports was made variable. The two ends of the transmission
line conductor are terminated by spherical caps in order to prevent corona from taking
place at these ends.

To keep the HV current connection free from corona, the HV source is connected to
the transmission line through microammeter A1 using a thick aluminum bar (10 mm
diameter). As can be seen in Fig. (5), the microammeter A1 is housed in a spherical
metallic cage to maintain it free from corona by preventing it from being exposed to the
high electric field.

For a specified transmission-line configuration the applied voltage is increased gradu-
ally from zero and the reading of microammeter A1 is watched. When A1 starts read-
ing, the applied voltage is the corona onset value. For different applied voltages above
the corona onset value, the corona current is recorded to measure the V-I characteristics
for this line configuration at different heights above the grounded plane.

For an applied voltage above the corona onset value, the current-density profile at the
grounded plane is obtained by measuring the current changes from strip to strip on the
grounded plate. Plots of the strip current-density versus the x-coordinate of the strip un-
derneath the transmission line gives the required current-density profile.

5. Results and Discussion

The proposed method of analysis was applied to different laboratory models of con-
ductor-to-plane transmission line configurations. The predicted values of the V-I char-
acteristics and the current density profiles at the ground-plane for different configura-
tions are discussed in the following sub-sections.
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5.1 Comparison of the Present Calculated Values with those Reported before

5.1.1 V-I Characteristics

The proposed finite-element ballooning algorithm is applied to the monopolar
conductor-to-plane transmission line configuration of[6,25]. The validity of the proposed
algorithm is examined by comparing the calculated corona current and ground-plane
current density values with those calculated[6] and measured[25] before.

The finite-element ballooning grid for the interior region and the first layer of the
exterior region is shown in Fig. (4). The mapping ratio α is taken at 1.3[15,17] and the
star point is directly underneath the conductor at the ground-plane, i.e. at P(x0, y0) =
(0, 0) as shown in Fig. (3).

When applying the proposed FE-ballooning algorithm, different ballooning layers
(annuli) were used, i.e. m = 0, 3, 7, and 12. It was found that the improvement in the
calculated values when using 12-ballooning layers over those obtained when using 7-
layers is negligible.

Figure (6) shows the V-I characteristics (for a configuration H = 2m, R = 0.025 m,
η = 0.942) obtained with ballooning layers (annuli), m = 0, 3 and 7, as compared to the
characteristics obtained from experiment[25] and from previous attempt that adopted the
ballooning technique[6]. It can be seen that assuming 0 layers introduced high error in
the calculated V-I characteristics. For this configuration, comparison of the V-I charac-
teristics obtained using previous algorithms[8-10] with those obtained experimentally[25]

and numerically[6] is shown in Fig. (7). It is worthy to mention that for this transmission
line configuration with 7 FE-ballooning layers, the computed results are in good agree-
ment with the previously measured[25] and calculated values[6] as well as with the
values calculated before by the authors[8-10]. Hence, one can conclude that imposing the
artificial boundaries X1-X2 and Y1-Y2 around the transmission  line conductors and
evaluating the potential values at the nodes located on these boundaries for use in the
FE formulation (as discussed in step (3) of section (3.3)) is appropriate. This conforms
with the fourth boundary condition listed in section 3.1.

5.1.2 Current-density profiles at the ground plane

Figure (8) shows the calculated current-density profiles at the ground versus that
obtained before[6,8-10] at 80 kV applied voltage. It is quite clear that the current density
values obtained by the proposed method agree well with the previous experimental[25]

than numerical[6,8-10] attempts. It is worthy to mention that the proposed algorithm
predicts also the V-I characteristics and the current-density profiles at the ground-plane
for full-scale transmission lines and the results agreed satisfactorily with experimental
values[26].

5.2 Comparison of the Present Calculated and Measured Values

5.2.1 V-I Characteristics

Using the designed set-up, measurements were made for smooth (η =1) transmission
lines conductors of different radii’s and heights above the ground plane. For H = 0.29 m,
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Fig. 6. Present calculated V-I characteristics of a laboratory conductor-to-plane configuration for different
ballooning layers in comparison with those calculated and measured before (H  = 2.0 m, R  = 0.0025
m, η = 0.942).

FIG. 7. Present calculated V-I characteristics of a laboratory conductor-to-plane configuration as compared
with those calculated and measured before (H = 2.0 m, R = 0.0025 m, η = 0.942).
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the present measured and calculated V-I characteristics are shown in Fig. (9) in compar-
ison with the authors’ previous attempts for two different conductor radii. It can be seen
that the agreement between the present measured and calculated results is good. Also it
can be seen that the FEBT algorithm predicts results that are in better agreement with
the measured values than previous attempts.

For conductor radius of R = 0.75 mm the effect of varying the conductor height on
the measured and calculated V-I characteristics is shown in Fig. (10). On the other
hand, for the same conductor height above the ground plane, the effect of varying the
conductor radius on the present measured and calculated V-I characteristics is shown in
Fig. (11). It is quite clear that the agreement between the measured and calculated
results is satisfactory.

5.2.2 Corona power loss

With the knowledge of the V-I characteristics for the transmission line configurations
of Fig. (9), the corona power loss in kW/km is determined which increases nonlinearly
with the applied voltage. It is worthy to mention that, when the line operates at its full
capacity, the corona power loss as a percentage of the ohmic power loss is negligible
(about 0.35%) when the applied voltage is very close to the corona onset value and
reaches about 60% at an applied voltage of 1.8 times the onset value. Moreover, these
percentages can assume higher values  if the transmission line is lightly loaded[26].

FIG. 8. Present calculated current density profile at the ground plane for a laboratory conductor-to-plane con-
figuration in comparison with those calculated and measured before (V = 200 kV, H = 2.0 m,
R = 0.0025 m, η = 0.942).
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FIG. 9. Calculated and measured V-I characteristics of laboratory transmission-line configurations (H = 0.29 m,
η = 1).

FIG. 10. Effect of conductor’s height on the present measured and calculated V-I characteristics for a labora-
tory conductor-to-plane transmission line configuration (R = 0.00075 m, η = 1).
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FIG. 11. Effect of conductor’s radius on the present measured and calculated V-I characteristics for a labora-
tory conductor-to-plane transmission line configuration (H = 0.545 m,  η = 1).

5.2.3 Current-density profiles at the ground-plane

For one of the transmission line configurations of Fig. (9), the measured and calculat-
ed ground plane current-density profiles at applied voltages of 54 kV and 82kV are
shown in Fig. (12). It is clear that the agreement between the measured and calculated
values is satisfactory. At the same time, it can be seen that the predicted results with ion
diffusion are lower than those predicted by the ballooning algorithm. In addition, it can
be seen that the measured current density profile is not completely symmetrical about
the Y-axis. This can be attributed to some experimental errors.

5.3 Accuracy and simplicity of the proposed method

It is quite clear that the calculated values predicted by the proposed finite-element
ballooning algorithm are in good agreement with the present measured and previously
calculated values. On the other hand, it is worthy to mention that the values predicted
by the FEBT are close to those measured by experiment, Figs. (7)-(9) and (12).

Also, it is worthy to mention that the results predicted when imposing the artificial
boundary at 3.5-5.5 times the transmission line height, H, are close to those predicted
when extending this artificial boundary to infinity (ballooning algorithm). Hence, one
can conclude that imposing the artificial boundaries – as proposed in this paper – made
it possible to approximately simulate the transmission  line boundaries at infinity. More-
over, the proposed grid makes it easier to formulate the describing equations along the
flux-tubes. All of this, of course,  simplifies the proposed method of analysis.
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FIG. 12. Present measured and calculated current density profiles at the ground-plane as compared with the
authors’ previous calculation ( H = 0.545 m, R = 0.00075 m, η = 1).

6. Conclusions

(1) An efficient iterative finite-element ballooning method has been developed for
the analysis of ionized field in conductor-to-plane transmission line configurations. The
proposed method simulates efficiently the commonly used artificial boundary around
the transmission line at  infinity.

(2) Unlike all attempts reported in the literature, the proposed finite-element balloon-
ing technique implements directly the electric field at the coronating conductor as a
boundary condition in the finite-element formulation.

(3) The agreement between the calculated values (corona current and current density
profiles at the ground plane) and those measured by the authors and by others is satis-
factory.

(4) Not only is the accuracy improved but also building the computer-program for
the proposed method is simple.
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