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ABSTRACf. This paper studies the aggregation/disaggregation of nearly
completely decomposable Markov chains that have many applications in
queueing networks and packet switched networks. A general class of simi­
larity transformation that transforms the stochastic transition probability
matrix into a reduced order aggregated matrix is presented. This transfor­
mation is used to develop an aggregation algorithm to compute the exact
stationary probability distribution, as weB as O( ek

) approximation of it. The
proposed aggregation method is applied to a multiprogramming computer
system with six active terminals and the capacity of the CPU and the secon­
dary memory is 3. This example is used to compare our algorithm with three
well-known algorithms. The simulation studies showed that our algorithm
usually converges in less number of iterations and CPU time. Moreover, it
is shown that the other algorithms do not converge in some cases while our
algorithm usually converges.

1. Introduction

Finite Markov chain has many applications in so many engineering problems.
Queueing networks which are extensively used for modeling computer systems and
evaluating their performance are one of the applications which received a great deal
of attention of the researchers(1-18]for the past decades. The problem arises in these
systems is determining the busy/idle period of the servers and the probability dis­
tribution of the queue length. This information can be e~pressed in terms of the
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stationary probability distribution (s. p.d.) vector of a finite Markov chain represent­
ing the queueing model.

Another important application which can be modeled as a Markovian queueing
system is the packet switched network[9-10]. The fundamental problem in this applica­
tion is again, to compute the stationary probability distribution of homogeneous
sytem of linear equations.

In these applications where this stationary probability distribution plays an impor­
tant role, the number of states in the Markov chain can be huge, i.e., much more than
10,000. Fortunately, in such large matrices the states can be clustered into small
groups such that there is a strong interaction within each group while the interaction
among the groups is weak compared to the interaction within the groups. This class
of Markov chain is known in the literature as nearly completely decomposable Mar­
kov chain. Simon and Ando[11] were the first to propose this class of systems and they
gave examples from economics to illustrate this class of systems. Since the seventies,
there have been several studies that contributed to the development of decomposi­
tion-aggregation method that exploits the strong-weak interaction structure to ob­
tain reduced-order approximation. Courtoisll ,4] developed the theory of the nearly
completely decomposable Markov chain and introduced the technique of aggrega­
tion in queueing network analysis and computer system performance evaluation(1-3].
Courtois developed an aggregation procedure that produce an O( £) approximation
to the stationary probability distribution, where £ is a small parameter that repre­
sents the intergroup interactions. This procedure has been extended to obtain an
O( £2) approximations[7]. Other numerical techniques which combine block decom­
position and iterative methods, like block Gauss-Seidel or block Jacobi methods
have been reported in referencesl8 , 18, 19,21]. Phillips and Kokotovicl12] gave a singular
perturbation interpretation to Courtois' aggregation. They developed a similarity
transformation that transforms the system into a singularly perturbed form, whose
slow model coincides with Courtois' aggragated matrix. The use of singular pertur­
bation in aggragation of finite state Markov chains has been pursued further in refer­
ences[13-151.

The paper is organized as follows: In the next section, we review briefly the nearly
completely decomposable Markov chains and introduce some of the notations and
conventions. In Section 3, a general class of transformation that transforms the
nearly completely decomposable Markov chains into a reduced-order aggregated
matrix is given. This transformation is more general than the one considered in refer­
ence6[12J. It is shown that within this transformation we can choose a transformation
that is independent of the system parameters. This is very important when we de­
velop our iterative algorithm in Section 4 because in this case we do not need to form
the aggregated matrix at each iteration. In this section also, we use the above trans­
formation to develop an aggregation method to compute the exact stationary dis­
tribution from a reduced order aggregated system. Properties of the aggregated sys­
tem is discussed and the uniqueness of the solution is derived. Moreover, it is shown
that all the transformations that satisfy the conditions of Section 3 produce the same
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D( E) approximation of the aggregated matrix. In Section 4, a class of transformation
is given to reduce the computational effort. This class of transformation will be used
to develop an iterative algorithm to compute the aggregated matrix. It is shown that
stopping the iteration after k steps gives an O( E

k + I) approximation of the stationary
probability distribution. Finally, in Section 5 we use the results of Sections 3 and 4 to
obtain an exact solution for the stationary behaviour of the multiprogramming sys­
tem. This example is used to compare our iterative method with the methods consi­
dered in references[x, IX. 19].

2. Nearly Completely Decomposable Markov Chains

The nearly completely decomposable Markov chain is a class of finite Markov
chains in which the transition probability matrix (t.p.m.) P E ~){n x 11 takes the form

P == In + A + E B (2.1 )

where In is the nth order identity matrix, E is the maximum degree of coupling and

A (2.2)

ANN

The diagonal blocks A ii are square and of order n
j

, i == 1, 2, ... , N .

Therefore

N

"\' n
1

== n

i = I

The matrices P and (I + A ii ), i == 1, 2, ... , N are stochastic. Hence the row sums of
A and B are zero. Notice here that there is an uncountable set of block diagonal
stochastic matrices A which makes the row sums of A and B zero. All these choices
give the same stationary probability distribution 7T which will be defined shortly. It is
assumed that the Markov chain has a single ergodic class. Thus P has a unique unity
eigenvalue and there is a unique positive left eigenventor 7T, which satisfies

7T P == 7T, 7T; > 0, 7Ten ~ 1 (2.3)

where en is a column vector consisting of n ones. The row vector 7T is called the statio­
nary probability distribution or the Perron-Frobenius eigenvector (P-F eigenvec­
tor). It is also assumed that each of the matrices (I + A ii ) is irreducible. Hence
(I + A ii ) has a unique unity eigenvalue. For samll E, the matrix A + E B has one zero
eigenvalue and N-l eigenvalues which are very close to zero. This might cause ill­
conditioning problem in solving (2.3). Moreover, the convergence of the standard
iterative methods for solving (2.3) will be very bad.
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Our first objective in this paper is to find a transformation that reduce the higher
order n-dimensional Markov chain system to a lower order N-dimensional systefl'l
where N« n.

This transformation makes use of the two-time scale property inherited in this
modeI 1I2,

201. The transformation decomposes the system into slow and fast parts and
as a result of this, the high and ill-conditioned Markov chain system is reduced to a
low order and well-conditioned one.

In the following sections the transformation that aggregates the Markov chain sys­
tem is proposed. Moreover, a special class of "block diagonal transformation", is
given to simplify and reduce the amount of computations required to form the aggre­
gated matrix. This transformation depends only on the dimensions of the subsys­
tems. It is independent of the system parameters. This special class of transformation
will be used to develop a new algorithm to compute the exact and the O( fk) approx­
imation of the stationary probability distribution vector 7T.

3. Exact Aggregation of Nearly Completely Decomposable Markov Chains

In this section, we propose a transformation that is more general than the transfor­
mation considered in reference II2]. The transformation can be described as follows :

Partition the transformation r such that

(3.1)

where W
1

E ~){n x Nand W
2

E ~){n x (n - N)

2. Choose WI such that A WI == O. Since A is block diagonal, WI can be chosen as
WI == diag [enl ' en2 ' ••• , enN ], where eni , i == 1, ... N is a column vector of ni ones. W2
can be any matrix such that the transformation ris nonsingular. The matrix r- 1 is
written as

(3.2)

where VI E ~)iN x nand V2 E ~){(n - N) x n. Therefore, VI WI == IN' V2W2 == In _ N' VI W2

== 0 and V2W I == O.

Apply this transformation to equation (2.3). Let {3 == 7TW I and y == 7TW2• Then,
equation (2.3) becomes

[ V
V2I ] P7T [WI W2 ] 7T (3.3)
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Multiply (3.3) from the right by Fto obtain

[

IN + EV1BWI VI (A + £B)W2 ]

[{3 y]
£V2BWI V2 (A + £B) W2 + In - N

Notice here, because A has N zero eigenvalues, so

119

[(3 )'] (3.4)

Where the upper left corner of the above matrix is N x N zero matrix. Since the
eigenvalues are invariant under the similarity transformation, therefore, V2A W2 is
nonsingular. This implies that for £ sufficiently small, V2 (A + £B) W2 is nonsingu­
lar. From (3.4) we have

(3.5)

and

Therefore
-I

Y == - {3 V] (A + £B) W2 [V2 (A + £8) W2 ] (3.7)

Substitute (3.7) into (3.5) to obtain

f3 ~IN + E (VIBW I - VI (A +E B) WJV2 (A + EB) W2 )-1 V2BW I ) 1== f3 (3.8)

Let

and

(3.10)

where

Then

{3 Pex == {3.

(3.11 )

(3.12)



120

or simply
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(3.13)

Again from (2.3), Tren == 1, therefore,

Hence

e == 1n
(3.14)

(3.15)

'Where eN is a column vector of N ones. Thus, the solution of the full order system
(2.3) is completely characterized by

(3.16)

where f3 is defined by (3.13) and (3.15), and)' is given by (3.7). Therefore, the high­
order n-dimensional system is reduced to a lower-order N-dimensional system. It is
shown in reference [20] that the solution of (3.13) and (3.15) is well-conditioned no
matter how small £ is.

The existence of a unique solution of (3.13) and (3.15) is discussed in Section 3.1.
In Section 3.2, we propose a class of transformation that reduces the amount of com­
putations required to form the aggregated matrix. Before discussing the existence of
a unique solution to (3.13) and (3.15), let us raise this question: Is the aggregated
matrix Pex is a stochastic matrix? The answer is no, in general. The following example
is a counter example which shows that the matrix Pex may not be stochastic.

Example 3.1

Consider the irreducible transition probability matrix

0.6 0.4 - £ 0 0 0 £
0.6 - £ 0.4 - £ 0 0 £ £

£ £ 0.5 - £ 0.5 - £ 0 0

p 0 £ 0.5 0.5 - £ 0 0
0.5£ 0.5£ 0.5£ 0.5£ 0.7 - £ 0.3 - £

0 0.5£ 0.0 0.5£ 0.7 0.3 - £
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From (2.1) and (2.2), the matrices A and Bare

121

-0.4 0.4 0 0 0 0 0 -I 0 0 0 1
0.6 - 0.6 0 0 0 0 - 1 - 1 0 0 1 1

A= 0 o - 0.5 OJ 0 0 and B = ) 1 -1 - 1 0 0
0 0 0.5 - 0.5 0 0 0 1 0 - 1 0 0
0 0 0 o - OJ OJ 0.5 0.5 0.5 0.5 -1 -1
0 0 0 0 0.7 -0.7 0 0.5 0 0.5 0 - 1

Let r be equal to

I 0 0 0 0 0
1 0 0 1 0 0

r 0 1 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 1 0 O· I

From (3.9)

_ [ - 1.4 + 0.5£
Qs - 1.5

0.85 - 0.5£

- 0.5£ 1.4 ]
- 1.5 - £ £

0.85 + £ - 1.7 - 0.5£

It is clear that the matrix Pex == (~ + £ Qs is not a stochastic matrix because of the
negative sign of the (12) element.

Since Pex is not necessary stochastic, the existence of a unique solution of (3.13)
and (3.15) should be shown. In the following section the properties of Q,\, is estab­
lished and from which the uniqueness of the solution can be concluded.

3.1 Properties of the aggregated matrix

The aggragated matrix Qs is a reduced form of the original matrix (A + £B) and it
inherits some of its properties. In this section some properties of Qs are given in the
form of theorems.

Theorem 3.1

The row sums of the matrix Qs are equal to zero.
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Proof

To prove this theorem it is enough to show that QseN == O.

Multiply (3.9) from the right by eN to obtain

QseN == VsBWteN == VSBefl

Recall from the definition of B that each row sum of B equal to zero. Therefore,

and this completes the proof. As a result of this theorem, the matrix Q
s

has a zero
eigenvalue. Another useful property of Qs is given in the following theorem.

Theorem .3.2

Let the matrix Qsbe defined as in (3.9) and tPs
i
be defined as the matrix Qswith its

ith column replaced by the vector eN . Then

a) The matrix Qs has a unique zero eigenvalue.
b) The matrix tPs

i
is nonsingular, for i == 1, 2, ... N.

c) Equations (3.13) and (3.15) have a unique solution and f3 i > == 1,2, ... ,N.

The proof of this theorem is given in reference [20]. Here, we will give a simpler
proof to part (a) only.

a) From the ergodicity assumption.

o ]} = rank (V.L.)
In - N

Since the matrix L is nonsingular,

n -1 == rank (eQs ) + rank (V2 (A + £8) W2 ) == rank (eQs) + n-N

Therefore

rank (Qs) == N - 1 (3.17)
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Since eN span the null space of Qs' (3.17) implies that Qs has a unique zero eigen­
value.

From the above theorem, we notice that Pex preserves some of the properties of P
whether Pex is stochastic or not, like one row sums, the uniqueness of the unity eigen­
value and the property that the left eigenvector corresponding to the unity eigen­
value is unique, positive and its sum equals 1. Moreover, although Pex is not unique,
depends on the choice of the similarity transformation r, the left eigenvector corres­
ponding to the unity eigenvalue B is unique for all classes of transformations satisfy­
ing (3.1) since we fixed the choice of WI .

3.2 Block Diagonal Transformation

From Section 3, it is clear that there is a wide class of transformations which give
the same aggregated matrix. Moreover, any order of approximation of the P-F
eigenvector 7T can be achieved via an expansion of the exact reduced order system,
(3.9). In this section a subclass of the general transformation matrix discussed previ­
ously is given. This transformation has a block diagonal structure. The idea of the
transformation is to specialize the choice of W2 in (3.1). Since WI is block diagonal,
we may choose W2 to be block diagonal as well. Such a choice will result in block
diagonal matrices VI and V2 • So, the matrices VI ' V2 , WI and W2 defined in section 3
become:

V(I) 0
I 000

V(2) 0 0
]o

o

o

vel)
2

o
o

o

o

o
V(2)

2

o

V(3)
]

o

o 0

o 0
v(3)

2

o

(3.18)

(3.19)

o o o o yeN)
2

(3.20)

o o
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and
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w(J) 0 0 0 0
2

o W(2) 0 0
2

o 0 W(3)
2 (3.21)

o o o OW(N)
2

where

V~i) W~i) == 1, V~i) wii) == 0, Vii) w~i) == 0 and vii) w~i) = I
mi

. The superscript
(i)
denotes the ith diagonal block of the respective matrix and m i = n i - 1. In this trans­
formation, computation of Vo is easier and more efficient. Recall from (3.11) that:

(3.22)

In this case VI' V2' (VIA W2) and ( V0.W2) are. block diagonal. Each diagonal
block of the matrix V2A W2 is equal to (V~/) AiiW~/» E ffimi x mi. This simplifies the
matrix multiplications and inversion involved in computing Vo ' The transformation
given in reference [12] belongs to this class of transformations. In reference [22] it is
shown that Vo is a closed form expression for the Perron-Frobenius eigenvectors for
the stochastic matrices (A + In)' Moreover, it is shown that all the transformations
that satisfy (3.1) produce the same Vo ' i. e., the same O( £ ) aggregated matrix.

We now propose a specific choice of W~i) that renders a particular simple transfor­
mation. This choice is the same as the one considered in reference [22] and it pro­
ceeds as follows :

For Ai;' i = 1,2, ... , N, let W~i) E ffin i x 1 and W~i) E ~ni x m; be

e and W(i)
ni 2 (3.23)

where Om. is a row vector consisting of m i zeros.
/

For this choice, V~i) E ~)iJ x n; and Vii) E ffimi x ni can be computed to be

V(i) == [0 0 ... 1]
1 '"

and

(3.24)

v(i)
2 (3.25)
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Our choice of transformation (3.23) - (3.25) is much simpler than the one prop­
osed in reference [12] because it is independent of the system parameters. This is
very important when we develop our algorithm, because we don't need to form the
aggregated matrix in each iteration. Moreover, the transformation r-] AT can be
obtained by inspection.

4. An Iterative Algorithm for Computing the Exact S.P.D.

From Section 3.2, we notice that choosing the block diagonal transformation
(3.23) - (3.25) will reduce the amount of computations required to form the aggre
gated matrix. Moreover, when this transformation is used, the matrix (V2 (A + EB) W2 )

approaches a block diagonal matrix as E tends to zero. This suggests that one should
exploit the closeness to a block diagonal matrix to simplify the inversion of ( ~/2 (A +
EB) W2 ). In this section we can employ this fact in developing an iterative algorithm
to compute the exact stationary probability distribution (S. P.O.), as well as
O( Ek

) approximation of it. This algorithm is based on computing ( V2 (A + EB) W2 ) -]

iteratively. It is shown in reference [22] that V\' can be written as

Vs == Vo-EVoBW2 (V2 (A + EB) W2 )-1 V2 (4.1)

Substituting (4.1) into (3.9), we get

Q
s

== VOBW] - EVoBW2 (V2 (A + fB) W2 )-1 V2BW, (4.2)

The procedure of this algorithm is described as follows :

~ ~

Let 5 == V2 A W2 ,R == v2BW2 and

Z == (V
2

(A + EB) W
2
)-1 == (5 + ER)-] (4.3)

where 5 is a block diagonal nonsingular matrix. Multiplying (4.3) from the right by
(5 + ER) to obtain

2
.1

5- 1
- EZR5- 1 f (Z) (4.4)

where f maps Z into Z.

The solution of this equation can be obtained via successive approximation iff ( .) is
a contraction mapping. We have

feZ,) - [(22 ) == E [Z2 - ZI] Y

d 1
where Y == RS- and Z1 ' Z2 E Z. Thus

II f (Z1) - f (22 ) II ~ E II Z2 - Z1 IIII Y II
Since A, B, V2 and W2 are 0(1), II Y II == 0(1). This implies that Ell Y II < 1 for suf­

ficientJy small E. Therefore ,[is a contraction mapping. Thus equation (4 .4) ha~ a un­
ique solution which givesf (Z) == Z.
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The successive approximation for computing (A 2 (A + £B) W2 ) -I proceeds as
follows.

• Let Z(- 1) == 0

• For k =7= 0, 1, 2, ...

Z(k) == S-I_£Z(k-l) y

• As k ~ CIJ, Z(k)~ (V2 (A + £8) W2 )-1 . Moreover,

II Z - Z(k) II == O( £k + 1)

To show (4.6), substract (4.5) from (4.4) to get

Z-Z(k) == £[Z(k-l) - Z) Y

Now, for k =:: 0, Z - Z(O) == - £Zy == 0 (£) and for k == I,

z - Z (I) == £ [ Z (0) _ Z] Y == £2Zy2 == O( £2 )

and by induction we can show that (4.6) is true.

(4.5)

(4.6)

(4.7)

Notice that the only matrix inversion required in this process is computing the in­
verse of the block diagonal matrix S.

Replacing (V
2

(A + £B) W
2

)-1 in (4.1) by Z(k-I) of (4.5) yields

_ (k- 1) >Vk - Vo - £VOBW2 Z V2 ,k - 1

The (k + 1)th order approximation of Qs ' k ~ 0 is given by

Qo == VOBW1

Qk == VkBW1 , k ~ 1

where Va and Vkare defined by (3.22) and (4.7) respectively. Hence

Qs == Q
k

+ 0 (£k + 1)

Approximating Qs in (3.9) by Qk yields

f3kQk == 0, f3keN 1

Lei

Pk + 1 == IN + cQk' k ~ 0

then equation (4.10) can be rewritten as

(4.8)

(4.9)

(4.10)

(4.11 )

1 (4.12)

Theorem 4.1

Let Pk + 1 be defined as in equation (4.11), then :

) P . O( k + 2) "a k + I IS an c approxImatIon of P
ex

•
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b) (3k is an O( E
k

+ I) approximation of (3.

c) 7Tk is an O( E
k

>- I) approximation of 7T, \vhere,
, (k)

7Tt.. == {3k VI + Yk V~ == {3k VI - {3k VI (A + EB) W2Z V2

and

Proof

127

(4.13)

(4.] 4)

a) From (3.10) and (4.9)

Pex == IN+EQs == IN+E[Qk +O(EI<.+I)]

b) From Theorem 3.2

{3 t/Jsi == ] i ( 4. 15)

where 1i is an N-dimensional row vector with the ith' element equal to 1 and the rest
of the elements equal to zero, i. e.,

(3 [q; , q; , ... , q./ - 1 , eN' q ~ + I , ••• , q~] == [0, 0, ... , 0, ], 0, ... ,OJ (4.16)

where q/ is the ith column of Qs .

Similarly, equation (4.10) can be rewritten as

{3kl/Jki == ] i

where l/Jki is obtained from Qk by replacing its ith column by eN .

From (4.9), (4.15) and (4.17) it follows that

(
k + 1

l/Jsi == l/Jki + 0 E )

(4.17)

(4.18)

Hence, l/Jki is nonsingular for sufficiently small E, which implies that (4.12) or equiva­
lently, (4.10) has a unique solution. Therefore,

({3 a13k ) l/Jki == 0 (EI<. + ] ) (4.19)

Since l/Jki is nonsingular,

{3 == 13k + 0 ( E
k

+ 1) (4.20)

c) From (3.13), (4.7) and (4.20)

7T == I3V
s

== (13
k

+ 0 ( E
k + I)) (Vk +0 ( E

k
+ I)) == 13kVk + 0 (E

k
+ I) == 7T

k
+ 0 (E

k + I)

Now, the proposed iterative algorithm can be summarized as follow:

a) Compute Z(k) iteratively from (4.5) for any degree of accuracy you choose.
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Notice that stopping the iteration after k steps results in 0 (£k + I) approximation of
7T.

b) Compute Vk and Qk by using equations (4.7) and (4.8).
c) Solve for the row vector 13k which is uniquely determined by (4.10) or equiva­

lently, (4.12).
d) Compute 7Tk as defined in (4.13).
e) Conduct a convergence test. If the accuracy is sufficient then stop and take Trk

to be the required solution. Otherwise, go to step (a).

4.1 Simulation Results

In this section, several numerical examples are given. These examples are solved
by the exact method presented in Section 3 and by the iterative algorithm presented
in Section 4. Moreover, these examples are solved by the three algorithms discussed
in reference[17]. The computer program for each algorithm was executed on PC/386­
20. The software was written in Pascal and compiled using the Turbo Pascal com­
piler. The program is terminated when 117T - Trk·lb :s; 10-7. If the convergence has not
been reached, the program is terminated at 50 iterations.

The simulation results showed that 0!lr propbsed algorithm converges more
rapidly than the other algorithms. Moreover, it is shown that these algorithms do not
converge in some cases while our algorithm usually converges in few number of iter­
ations.

Example 4.1

Consider the following transition probability matrix given in referencel16]. This
matrix represents a nearly completely decomposable Markov chain with three
blocks, i.e., N = 3

0.434 0.548 0.010 0.000 0.006 0.002
0.340 0.645 0.000 0.005 0.010 0.000
0.004 0.005 0.219 0.765 0.007 0.000

p 0.002 0.000 0.213 0.785 0.000 0.000
0.008 0.002 0.000 0.000 0.667 0.323
0.005 0.001 0.000 0.010 0.725 0.259

The exact stationary probability distribution is shown in the following five col­
umns:

1. Exact Method: is the solution by using our exact aggregation method pre-
sented in section 3.

2. Kouri: is the solution by using (K-M-S) algorithm[18].
3. Takahashi: is the solution by using Takahashi algorithmlI9].
4. Vantilborh: is the solution by using Vantilborgh algorithml8].
5. Prop. Algor.: is the solution by using our proposed algorithm discussed in Sec­

tion 4.
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Exact method Kouri Takahashi Vantilborgh Prop. Algor.

~

7TVector Tr/( Vector 7Tk Vector Trk Vector 7Tk Vector

0.09609287 0.09609287 0.09609287 0.09609287 0.09609287
0.15107140 0.15107140 0.15107140 0.15107140 0.15107140
0.10736545 0.10736545 0.10736545 0.10736545 0.10736545
0.38916190 0.38916190 0.38916190 0.38916190 0.38916190
0.17831986 0.17831986 0.17831986 0.17831986 0.17831986
0.07798853 0.07798853 0.07798853 0.07798853 0.07798853

CPU time is CPU time is CPU time is CPU time is CPU time is
Os, 50 ms Os,160ms Os, lOOms Os, lOOms Os, lOOms

Iterations Iterations Iterations Iterations
7 4 4 3

Notice from Table 1 that the four iterative methods converge to the exact solution
in a few number of iterations. Our method converg'es in less number of iterations.

The CPU time in this example and in the next ones is an approximate and some­
times there is slight difference in the CPU time from one run to another. Also, in all
the examples we considered the CPU time for our exact aggregation method is less
than the one for the iterative methods. This should be expected since we deal with
small size matrices. In our iterative method, part of the CPU time is required for the
transformation step which is performed before applying the iterative algorithm. This
made the CPU time of our algorithm in the previous example is comparable with the
others although the number of iterations is less. The significance of our algorithm
does not lie in the CPU time only, but, in its usual convergence. The other algorithms
do not converge in some cases as we will see in the next example and in the multiprog­
ramming system considered in Section 5. 1.

Example 4.2

This example deals with evaluating computer system performance. The transition
probability matrix of the page fault probability of the LRU (least recently used) re­
placement algorithm is given in reference[1].

Due to the size of this matrix, we refer the interested reader to the work of Cour­
tois ili .

The S.P.D. solved by the exact exaggeration method and the iterative algorithms
is given in Table 2.

Table 2 shows that Kouri, Takahashi and Vantilborgh algorithms did not converge
to the exact solution even if we increase the number of iterations, while our al­
gorithm takes only 4 iterations to converge.
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TABLE 2.
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Exact method Kouri Takahashi Vantilborgh Prop. Algor.

7T Vector 1Tk Vector 7Tk Vector 7Tk Vector 7Tk. Vector

0.07150547 0.07051917 0.07150499 0.07150499 0.07150547
0.06311665 0.06224461 0.06311652 0.06311652 0.06311665
0.05842784 0.05762605 0.05842773 0.05842773 0.05842784
0.03768036 0.03715108 0.03767996 0.03767996 0.03768036
0.07382848 0.07281037 0.07382839 0.07382839 0.07282848
0.05689172 0.05610132 0.05689156 0.05689156 0.05689172
0.06071739 0.06027951 0.06071581 0.06071581 0.06071739
0.06005172 0.05961566 0.06005032 0.06005032 0.06005172
0.06036241 0.05992708 0.06036115 0.06036115 0.06036241
0.06005154 0.05961404 0.06005003 0.06005003 0.06005154
0.06023276 0.05979708 0.06023143 0.06023143 0.06023276
0.10777089 0.10559154 0.10771570 0.10771570 0.10777089
0.07186578 0.07047838 0.07189624 0.07189624 0.07186578
0.08164878 0.08006275 0.08167336 0.08167336 0.08164878
0.07584821 0.07436089 0.07585680 0.07585680 0.07584821

CPU time is CPU time is CPU time is CPU time is CPU time is
Os,430ms 6s, 90 ms 6s,750ms I 3s,620ms 1s,40ms

Iterations Iterations Lterations Iterations
50 50 50 4

5. Multiprogramming Computer System

We have mentioned in the introduction that the nearly completely decomposable
Markov chain has many applications in queueing networks. In this section we con­
sider a queueing network model of a computer system studied by Courtois[1-3] and
VantilborghP].

This model represents a multiprogramming computer system. A diagram of this
model is shown in Fig. 1. The system consists of

1. A set of L terminals from which L users generate random command according
to Poisson process with a rate of A.

2. A central processing unit (CPU) represented by 51 with state dependent expo­
nential mean service rate J..t} (i) where 1 is the number of jobs in queue 5 I'

3. A paged secondary memory 52 with state dependent service rate J..t2 (i2 ) where
i2 is the number of jobs in queue 52

When a command is generated, the user at the terminal remains inactive until the
system responds to that command. Command from terminal enters the multiprog­
ramming mix if it + i2 < M, where M is the maximum capacity of the multiprogram­
ming mix, otherwise it is kept waiting in queue Q3' At the end of service at CPU it
goes to secondary memory with probability aand to Q~ with probability 'P. The state
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l Terminals

Multiprogramming Mix

FIG. L. Multiprogramming computer system.
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of this system is uniquely defined by the triplet (it ~ i2 ' i3 ) and the transition proba­
bility matrix Q (L, M) is formed by ordering the states as follows: First comes all the
states with i3 == O. The state with constant i 1 + i2 represents one group in the whole
system which is represented by the stochastic matrix Q (L, M). The group with smal­
ler i l + i2 comes first and within this group, states with smaller value of i2 come first.
Then states with i3 == 1, 2 ... , L - M are ordered and grouped by the same procedure.
For more details of forming Q (L, M), we refer the reader to the work of Vantil­
borgh[7]. The service rates for the CPU and the secondary memory are chosen as in
reference[7] .

64 '.
i + 16 and J..L2 (l2)

3i
i + 6

(5.1 )
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5.1 Numerical Example

R. W. Aldhaheri

The purpose of this section is to apply our method in computing the exact statio­
nary probability distribution described in Sections 3 and 4 to the model of the multip­
rogramming computer system discussed in the previous section. As we did in exam­
ples 4.1 and 4.2 we will compare our iterative algorithm with the ones in references[8,
18, 19], in terms of the number of iterations required to converge to the exact solution
and the CPU time. In this example, we consider the multiprogramming system with
6 terminals and the capacity of CPU and the secondary memory is 3. This system can
be modeled as a Markov chain with 22 x 22 probability transition matrix. The com­
putation of this transition matrix with 8 = 0.9, A = 0.2 and cp = 0 is given in refer­
ence[22l. The time dependent service rates of the CPU and the secondary memory are
chosen as in equation (5.1). The stochastic matrix derived from this model is block
tridiagonal and the blocks themselves along the diagonal are tridiagonal. The
maximum degree of coupling in this example, E is 0.12 and the maximum number of
iterations and the tolerance of the convergence is chosen as in Examples 4.1 and 4.2.

TABLE 3.

Exact method Kouri Takahashi Vantilborgh Prop. Algor.

7T Vector 7Tk Vector 7Tk Vector 7Tk Vector 7Tk Vector

0.00000829 0.00002204 0.00003999 0.00000829 0.00000829
0.00002643 0.00007024 0.00012746 0.00002643 0.00002643
0.00020551 0.00006074 0.00011022 0.00020551 0.00020551
0.00007848 0.00010142 0.00010142 0.00007848 0.00007848
0.00054198 0.00053554 0.00053553 0.00054198 0.00054197
0.00231382 0.00229925 0.00229924 0.00231382 0.00231382
0.00024677 0.00025167 0.00025167 0.00024677 0.00024676
0.00144625 0.00144809 0.00144809 0.00144625 0.00144624
0.00464864 0.00464662 0.00464661 0.00464864 0.00464864
0.00984417 0.00983990 0.00983989 0.00984418 0.00984418
0.00088077 0.00088164 0.00088163 0.00088078 0.00088075
0.00551710 0.00551779 0.00551778 0.00551710 0.00551709
0.01979751 0.01979681 0.01979677 0.01979752 0.01979752
0.05213223 0.05212870 0.05212860 0.05213226 0.05213224
0.00239458 0.00239462 0.00239462 0.00239459 0.00239459
0.01631713 0.01631670 0.01631666 0.01631714 0.01631714
0.06566995 0.06566751 0.06566735 0.06566997 0.06566997
0~20279844 0.20279034 0.20278989 0.20279851 0.20279845
0.00356108 0.00356102 0.00356101 0.00356114 0.00356110
0.02687135 0.02687041 0.02687031 0.02687139 0.02687136
0.12399969 0.12399503 0.12399459 0.12399966 0.12399968
0.46069982 0.46068230 0.46068067 0.46069958 0.46069979

CPU time is CPU time is CPU time is CPU time is CPU time is
Os,760ms 6s,150ms 8s,70ms 5s,710ms 2s,360ms

Iterations Iterations Iterations Iterations
50 50 50 8
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Notice in Table 3 that Koury, Takahashi and Vantilborgh algorithms do not con­
verge, within the specified tolerance, while the proposed algorithm takes only 8 iter­
ations to converge to the exact solution. We tried to increase the number of iterations
but the stationary probability distribution for the other algorithms did not change.
Notice also, that Vantilborgh algorithm is very close to the exact, but the other two
algorithms are way off.

6. Conclusions

In this paper we have proposed a general transformation that transforms the
stochastic systems which can be modeled as large finite-state Markov chains into re­
duced order systems. This enabled us to compute the exact stationary probability dis­
tribution of the nearly completely decomposable Markov chain by solving a reduced
order well-conditioned aggregated problem. A block diagonal transformation,
which is a subclass of the general one, is proposed to simplify and reduce the amount
of computations. This transformation is used to develop an iterative algorithm to
compute the exact as well as the 0 (ek

) approximation of the stationary probability
distribution. This algorithm is compared with three well-known algorithms known in
the literature. It is shown that our algorithm converges in all the examples we consi­
dered while the other algorithms do not converge in some of the examples even if we
increase the number of iterations. In the examples where the other algorithms con­
verge, our proposed algorithm was found to converge in less number of iterations.

The aggregation procedure is applied to the aggregative analysis of a queueing net­
work model of a computer system to illustrate our approach and its significance.
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