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ABSTRACT. The hourly electric load in the Western Province of Saudi Arabia
has four distinct patterns, namely that of summer season, spring season, fall
season, and winter season. This paper demonstrates fitting of an auto regres-
sive integrated moving average model to the summer season data using the
Box and Jenkins time series approach. The model is tested for forecasting by
using a set of test data. The resulting forecasts, which are checked by different
criteria, are found to have a high degree of accuracy. The whole exercise has
been carried out by using computer programs, which were partly developed.

1. Introduction

Electric load forecasting occupies a central role in the planning and operation of electric
power systems[1]. Over a period of time, different attempts have been made to achieve
this goal by using a variety of quantitative approaches of which perhaps the most out-
standing has been the time series analysis approach[2-7]. This paper reports such an at-
tempt for forecasting the hourly electric load for the Western province of Saudi Arabia.
An effort was first made to apply the Dynamic Data System approach[8]. When that
didn’t succeed, the Box and Jenkins approach was employed[9]. The resulting models
were of auto-regressive integrated moving average type. The forecasts developed by
these models have a high degree of accuracy as confirmed by a set of different criteria[10-11].
The hourly electric load for the Western Province of Saudi Arabia has four distinct sub-
sets, namely, summer season, spring season, fall season, and winter season. A separate
model was developed for each season. This paper reports, for the sake of illustration,
the results pertaining to the summer season only[12].

2. The Data

The hourly electric load was analyzed for the Hegra year 1410 as shown in Table 1
and Figures 1 and 2. Furthermore, a typical week’s data are plotted in Figures 3-6 for
each of the summer, fall, winter, and spring seasons.
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TABLE 1. Basic statistical analysis of hourly electric load in MW (Year 1410 H) on a month-to-month basis.

Month Maximum Minimum Mean STD

01/1410 H 2811 1879 2431 176

02/1410 H 2897 1782 2504 203

03/1410 H 2734 1284 2131 299

04/1410 H 2267 1108 1728 223

05/1410 H 1918 766 1264 246

06/1410 H 1644 721 1125 176

07/1410 H 1670 712 1079 182

08/1410 H 1653 578 1193 194

09/1410 H 2525 905 1721 352

10/1410 H 2641 1136 2073 303

11/1410 H 3165 1881 2575 252

12/1410 H 3132 1840 2606 263

FIG. 1. Hourly electric load in first half of 1410 H year.
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FIG. 3. A typical week in summer.

FIG. 2. Hourly electric load in second half of 1410 H year.
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FIG. 5. A tyical week in winter.

FIG. 4. A typical week in fall.
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FIG. 6. A typical week in spring.

These amply demonstrate the need of modeling separately for each of the four sea-
sons.

The summer season is divided into two parts: one part in the beginning of the year
1410 H from 1/1/1410 H to 22/2/1410 H and the other at the end of the year from 29/11/
1410 H to 30/12/1410 H. The second part is abnormal as it contains the Hajj season. So
the first part was chosen for this exercise. Of this, 840 data points of the 5-week period
from 4/1/1410 H to 8/2/1410 H were chosen for modeling purposes and 168 data points
for the one-week period from 9/2/1410 H to 15/2/1410 H were chosen for testing the
forecast. Plot of these data is shown in Figure 7.

3. The Model

Let Zt, Zt – 1, Zt – 2, ... represent observations of an equispaced time series in time t,
t – 1, t – 2, ... Using B as a back shift operator such that βj Zt = Zt – j an autoregressive
moving average model for this series can be written as:

ϕ(B) Z̃t = θ(B) at  , (1)

where  Z̃t = Zt – µ, the deviation of the process from its mean,

ϕ(B) = 1 – ϕ1 B – ϕ2 β2 – ... – ϕp β2 is the autoregressive operator with ϕi, i = 1, 2, ... , p
as the autoregressive parameters, θ(B) = 1 – θ1 B – θ2 β2 – ...  – θq βq is the moving av-



F.A. Burney, M.S. Al-Jiffry & A.B. Esshack74

erage operator with θj, j = 1,2, ... , q as the moving average parameters, and at = Nor-
mally distributed residuals with mean zero and variance σ2

a.

Introducing the difference operator ∇  such that

∇  Z̃t = Z̃t –  Z̃t – 1 ,

∇ 2 Z̃t = ∇ (∇ Z̃t ) ∇ (Z̃t – Z̃t – 1)  =  Z̃t – 2 Z̃t – 1 + Z̃t – 2  ,

and so on, the model now becomes as autoregressive integrated moving average model;

ϕ(β) ∇ d Z̃t = θ(β) at  , (2)

with ∇ d = (1 – B)d.

Finally, when seasonality is introduced for both the autoregressive and moving aver-
age parts the model becomes;

ϕ(β) Φ(Bs) ∇ d ∇ D
s  Z̃t  = θ(β) Θ(Bs) at  , (3)

FIG. 7. Selected summer data.
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where Φ(Bs) = 1 – Φ1Bs – Φ2B2s – ... – ΦpBps is the seasonal autoregressive operator ,
with Φi, i = 1,2, ... , p as the seasonal autoregressive parameters,

∇ D
s = (1 – Bs)D is the seasonal differencing operator such that ∇ s  Z̃t  = Z̃t – s ,

and 

Θ(Bs) = 1 – Θ1 B
s – Θ2B2s – ... – ΘqBqs is the seasonal moving average operator with

Θj, j = 1, 2, ... , q as the seasonal moving average parameters.

4. The Data Fitted to Model

The Box and Jenkins approach to modeling consists of three stages, namely, identifi-
cation, parameter estimation, and diagnostic checking[9].

The following briefly describes how these three stages were gone through interactive-
ly to arrive at a proper model for the data.

The autocorrelation plot of the data showed an oscillating pattern with a number of
significant autocorrelations indicating the need for differencing. After a number of trials
the hourly-weekly basis was found to be the best differencing method to achieve sta-
tionarity. Next, the partial autocorrelation plot of the differenced data was made. Since
it showed two significant spikes, the following model was tentatively fitted.

(1 – β)  (1 – β168) (1 – ϕ1B24 – ϕ2B48)  Z̃t = at  . (4)

The autocorrelation plot of the residuals shows a significant value at lag 168. Since
the trial and error runs showed best fit for the moving average factor, the following
model was tried;

(1 – β) (1 –β168) (1 – ϕ1B24 – ϕ2B48) Zt = (1 - θ1β168) at  . (5)

The autocorrelation plot of the residuals showed two significant values at lags 46 and
48. Including these caused the model to be unstable and inadequate. Hence nonseasonal
factors were introduced and values of p - 1 and q = 1 were found to be appropriate.
Thus the model turned out to be as follows:

(1 – β) (1 – β168) (1 – ϕ1β) (1 – ϕ2B24) (1 – ϕ3β48)  Z̃t = (1 – θ1β)

(1 – θ2β46) (1 – θ3β48) (1 – θ4β168) at  . (6)

The model was now fitted to the data. The parameter estimates and their confidence
intervals are shown in Table 2. The chi-square test of adequency results are shown in
Table 3. Furthermore, the autocorrelations and partial autocorrelations of the residuals
were also plotted. The results indicated:

a) no significant autocorrelation or partial autocorrelation,

b) the confidence intervals of the parameters do not include zero, and
c) the model passes the chi-square test of adequancy.

Hence the final model adopted was:

(1 – B) (1 – B168) (1 – .97127B) (1 – .31B24) (1 – .99489 B48)  Z̃t
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TABLE 2. Parameters estimates and their confidence intervals.

Parameter Lag Estimate Standard Upper 95% Lower 95% Parameter
error conf. limit conf. limit Ok?

MA1, 1 1 0.99807 0.0028103 1.003578188 0.992561812 Yes

MA2, 1 46 0.1427 0.0399 0.220904 0.064496 Yes

MA3, 1 48 0.71397 0.05978 0.8311388 0.5968012 Yes

MA4, 1 168 0.50906 0.04105 0.589518 0.428602 Yes

AR1, 1 1 0.97127 0.01138 0.9935748 0.94895652 Yes

AR2, 1 24 0.31 0.04102 0.3903992 0.2296008 Yes

AR3, 1 48  0.99489 0.03964 1.0725844 0.9171956 Yes

Table 3. Chi-Square test on the summer model.

To Lag A u t o c o r r e l a t i o n s

6  0.06185 – 0.0155 – 0.04104 – 0.03195 – 0.01609 – 0.044885

12 – 0.01868 – 0.00258 – 0.03152 – 0.0496  0.008  – 0.0255

18  0.00706 – 0.00081  0.0226 – 0.01855  0.04021 0.00524 

24  0.06145  0.01706 – 0.01501  0.03697  0.09092 – 0.002    

To Lag Squared autocorrelations / (n – k)

6 5.70959E-06  3.59118-07 2.52138E-06 1.53044E-06 3.88721E-07 3.58845E-06

12 5.22516E-07 1.00398E-08 1.50077E-06   3.7288E-06   9.69697-08 9.86722E-07

18 7.57502E-08   9.9863E-10 7.78598E-07 5.25347E-07 2.47224E-06 4.20484E-08

24 5.79157E-06 4.44072E-06 3.47716E-07 2.10598E-06 1.27569E-05 6.18238E-11

To Lag DF
Calculated Tabulated

Is Calc. < Tabu.? Conclusion
Chi-Square Chi-Square

6 0 – –

12 5 9.455963894 11.07 Yes

18 11 11.21487099 19.68 Yes

24 17 20.90049485 27.59 Yes Model is adequate

= ( 1 – .99807B) (1 – .1427 B46) (1 – .7139 B48) (1 – .50906 B168) at  . (7)

5. Forecasts and their Validity

Using the test data (168 points) three different forecasts were made, namely one hour
ahead, 12 hours ahead, and 24 hours ahead. To check the forecast validity, the mean ab-
solute percentage error, MAPE, was calculated. As shown in Table 4 the values of
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MAPE are .67%, 1.03% and 1.14% which indicate high reliability of the forecasts. This
is further confirmed by the comparative graph of the 24 hours ahead forecasts vs actual
data as shown in Figure 8. This graph shows how closely the forecast figures follow the
actual values.

TABLE 4. Forecasting performance indicators of summer model.

Indicator Description
Data set – hours ahead

Fit – 1 Test – 1 Test – 12 Test – 24

SSE Sum squared error 310556 83926.8 90232 204499

MSE Mean squared error 462.826 499.564 1132.33 1217.25

RMSE Root mean squared error 21.5134 22.3509 33.6501 34.8891

MAE Mean absolute error 16.2702 16.6685 25.444 28.4507

MAPE Mean absolute percentage error 0.66% 0.67% 1.03% 1.14%

FIG. 8. Actual loads vs forecasts in summer season.



F.A. Burney, M.S. Al-Jiffry & A.B. Esshack78

Conclusion

This paper has demonstrated the application of Box and Jenkins approach to build a
time series model for a set of hourly electric load data for the Western Province of Sau-
di Arabia. Following the standard strategy of identification, parameter estimation and
diagnostic checking, a seasonal autoregressive integrated moving average model is fit-
ted to a set of data comprising of 840 points. Another set of 168 data points are then
used for testing the one hour ahead, 12 hours ahead, and 24 hours ahead forecasts. The
forecasts are found to have high accuracy. The whole exercise has been carried out by
using computer programs, which were partly developed.
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